Associated Legendre function: Difference between revisions
imported>Paul Wormer |
imported>Paul Wormer (ugly typo (oops)) |
||
Line 1: | Line 1: | ||
In [[mathematics]] and [[physics]], an '''associated Legendre function''' ''P''<sub>''l''</sub><sup>(''m'')</sup> is related to a [[Legendre polynomial]] ''P''<sub>''l''</sub> by the following equation | In [[mathematics]] and [[physics]], an '''associated Legendre function''' ''P''<sub>''l''</sub><sup>(''m'')</sup> is related to a [[Legendre polynomial]] ''P''<sub>''l''</sub> by the following equation | ||
:<math> | :<math> | ||
P^{(m)}_\ell(x) = (1-x^2)^{m/2} \frac{d P_\ell(x)}{dx^\ell | P^{(m)}_\ell(x) = (1-x^2)^{m/2} \frac{d^m P_\ell(x)}{dx^m}, \qquad 0 \le m \le \ell. | ||
</math> | </math> | ||
For even ''m'' the associated Legendre function is a polynomial, for odd ''m'' the function contains the factor (1-''x'' ² )<sup>½</sup> and hence is not a polynomial. | For even ''m'' the associated Legendre function is a polynomial, for odd ''m'' the function contains the factor (1-''x'' ² )<sup>½</sup> and hence is not a polynomial. |
Revision as of 10:09, 22 August 2007
In mathematics and physics, an associated Legendre function Pl(m) is related to a Legendre polynomial Pl by the following equation
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P^{(m)}_\ell(x) = (1-x^2)^{m/2} \frac{d^m P_\ell(x)}{dx^m}, \qquad 0 \le m \le \ell. }
For even m the associated Legendre function is a polynomial, for odd m the function contains the factor (1-x ² )½ and hence is not a polynomial.
The associated Legendre polynomials are important in quantum mechanics and potential theory.
Differential equation
Define
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi^{(m)}_\ell(x) \equiv \frac{d^m P_\ell(x)}{dx^m}, }
where Pl(x) is a Legendre polynomial. Differentiating the Legendre differential equation:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1-x^2) \frac{d^2 \Pi^{(0)}_\ell(x)}{dx^2} - 2 x \frac{d\Pi^{(0)}_\ell(x)}{dx} + \ell(\ell+1) \Pi^{(0)}_\ell(x) = 0, }
m times gives an equation for Π(m)l
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1-x^2) \frac{d^2 \Pi^{(m)}_\ell(x)}{dx^2} - 2(m+1) x \frac{d\Pi^{(m)}_\ell(x)}{dx} + \left[\ell(\ell+1) -m(m+1) \right] \Pi^{(m)}_\ell(x) = 0 . }
After substitution of
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Pi^{(m)}_\ell(x) = (1-x^2)^{-m/2} P^{(m)}_\ell(x), }
and after multiplying through with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1-x^2)^{m/2}} , we find the associated Legendre differential equation:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1-x^2) \frac{d^2 P^{(m)}_\ell(x)}{dx^2} -2x\frac{d P^{(m)}_\ell(x)}{dx} + \left[ \ell(\ell+1) - \frac{m^2}{1-x^2}\right] P^{(m)}_\ell(x)= 0 . }
In physical applications it is usually the case that x = cosθ, then the associated Legendre differential equation takes the form
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{\sin \theta}\frac{d}{d\theta} \sin\theta \frac{d}{d\theta}P^{(m)}_\ell +\left[ \ell(\ell+1) - \frac{m^2}{\sin^2\theta}\right] P^{(m)}_\ell = 0. }
Extension to negative m
By the Rodrigues formula, one obtains
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_\ell^{(m)}(x) = \frac{1}{2^\ell \ell!} (1-x^2)^{m/2}\ \frac{d^{\ell+m}}{dx^{\ell+m}}(x^2-1)^\ell.}
This equation allows extension of the range of m to: -l ≤ m ≤ l.
Since the associated Legendre equation is invariant under the substitution m → -m, the equations for Pl( ±m), resulting from this expression, are proportional.
To obtain the proportionality constant we consider
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1-x^2)^{-m/2} \frac{d^{\ell-m}}{dx^{\ell-m}} (x^2-1)^{\ell} = c_{lm} (1-x^2)^{m/2} \frac{d^{\ell+m}}{dx^{\ell+m}}(x^2-1)^{\ell},\qquad 0 \le m \le \ell, }
and we bring the factor (1-x²)-m/2 to the other side. Equate the coefficient of the highest power of x on the left and right hand side of
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d^{\ell-m}}{dx^{\ell-m}} (x^2-1)^{\ell} = c_{lm} (1-x^2)^m \frac{d^{\ell+m}}{dx^{\ell+m}}(x^2-1)^{\ell},\qquad 0 \le m \le \ell, }
and it follows that the proportionality constant is
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!} ,\qquad 0 \le m \le \ell, }
so that the associated Legendre functions of same |m| are related to each other by
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P^{(-|m|)}_\ell(x) = (-1)^m \frac{(\ell-|m|)!}{(\ell+|m|)!} P^{(|m|)}_\ell(x). }
Note that the phase factor (-1)m arising in this expression is not due to some arbitrary phase convention, but arises from expansion of (1-x²)m.
Orthogonality relations
Important integral relations are
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{-1}^{1} P^{(m)}_{\ell}(x) P^{(m)}_{\ell'}(x) d x = \frac{2\delta_{\ell\ell'}(\ell+m)!}{(2\ell+1)(\ell-m)!} }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{-1}^{1} P^{(m)}_{\ell}(x) P^{(n)}_{\ell}(x) \frac{d x}{1-x^2} = \frac{\delta_{mn}(\ell+m)!}{m(\ell-m)!} }
Recurrence relations
The functions satisfy the following difference equations, which are taken from Edmonds[1]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\ell-m+1)P_{\ell+1}^{(m)}(x) - (2\ell+1)xP_{\ell}^{(m)}(x) + (\ell+m)P_{\ell-1}^{(m)}(x)=0 }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle xP_{\ell}^{(m)}(x) -(\ell-m+1)(1-x^2)^{1/2} P_{\ell}^{(m-1)}(x) - P_{\ell-1}^{(m)}(x)=0 }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_{\ell+1}^{(m)}(x) - x P_{\ell}^{(m)}(x)-(\ell+m)(1-x^2)^{1/2}P_{\ell}^{(m-1)}(x)=0 }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\ell-m+1)P_{\ell+1}^{(m)}(x)+(1-x^2)^{1/2}P_{\ell}^{(m+1)}(x)- (\ell+m+1) xP_{\ell}^{(m)}(x)=0 }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1-x^2)^{1/2}P_{\ell}^{(m+1)}(x)-2mxP_{\ell}^{(m)}(x)+ (\ell+m)(\ell-m+1)(1-x^2)^{1/2}P_{\ell}^{(m-1)}(x)=0 }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1-x^2)\frac{dP_{\ell}^{(m)}}{dx}(x) =(\ell+1)xP_{\ell}^{(m)}(x) -(\ell-m+1)P_{\ell+1}^{(m)}(x) }
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =(\ell+m)P_{\ell-1}^{(m)}(x)-\ell x P_{\ell}^{(m)}(x) }
Reference
- ↑ A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press, 2nd edition (1960)
External link
Weisstein, Eric W. "Legendre Polynomial." From MathWorld--A Wolfram Web Resource. [1]