Uniform space: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Wlodzimierz Holsztynski
(→‎Definition: diagonal)
imported>Wlodzimierz Holsztynski
Line 35: Line 35:
::<math>\mathcal U\ :=\ \{W \subseteq X\times X : \Delta_X \subseteq W\}</math>
::<math>\mathcal U\ :=\ \{W \subseteq X\times X : \Delta_X \subseteq W\}</math>
is a uniform structure in <math>\ X</math> too; it is called the '''strongest uniform structure''' or the '''discrete uniform structure''' in <math>\ X</math>.
is a uniform structure in <math>\ X</math> too; it is called the '''strongest uniform structure''' or the '''discrete uniform structure''' in <math>\ X</math>.
== [[Metric space]]s ==
Let <math>\ (X, d)</math> be a metric space. Let
:: <math>B_t\ :=\ \{(x,y) : d(x,y) < t\}</math>
for every real <math>\ t > 0</math>. &nbsp;Define now
::<math>\mathcal B_d\ :=\ \{B_t : t > 0\}</math>
and finally:
::<math>\mathcal U_d\ :=\ \{W : \exists_t\ B_t\subseteq W \subseteq X\times X\}</math>
Then <math>\mathcal U_d</math> is a uniform structure in <math>\ X</math>; it is called the '''uniform structure induced by metric <math>\ d</math>'''&nbsp; (in <math>\ X</math>).

Revision as of 06:09, 18 December 2007

In mathematics, and more specifically in topology, the notions of a uniform structure and a uniform space generalize the notions of a metrics (distance function) and a metric space respectively. As a human activity, the theory of uniform spaces is a chapter of general topology. From the formal point of view, the notion of a uniform space is a sibling of the notion of a topological space. While uniform spaces are significant for mathematical analysis, the notion seems less fundamental than that of a topological space. The notion of uniformity is auxiliary rather than an object to be studied for their own sake (specialists on uniform spaces may have a different view though).

Historical remarks

The uniform ideas, in the context of finite dimensional real linear spaces (Euclidean spaces), appeared already in the work of the pioneers of the precision in mathematical analysis (A.-L. Cauchy, E. Heine).Next, George Cantor constructed the real line by metrically completing the field of rational numbers, while Frechet introduced metric spaces. Then Felix Hausdorff extended the Cantor's completion construction onto arbitrary metric spaces. General uniform spaces were introduced by Andre Weil in 1937. A different but equivalent construction was introduced and developed by Soviet topologists.

Definition

Given a set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X} , and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V, W \subseteq X\times X} , let's use the notation:


Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta_{X}\ :=\ \{(x,x) : x \in X\}}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V^{-1}\ :=\ \{ (y, x) : (x, y) \in V\}}

and

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W \circ\, V := \{(x,z) : \exists_{y\in X}\ \left((x,y)\in V,\ \ (y,z)\in W\right)\}}


An ordered pair Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (X, \mathcal U)} , consisting of a set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X} and a family Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal U} of subsets of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X\times X} , is called a uniform space, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal U} is called a uniform structure in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X} , if the following five properties (axioms) hold:

  1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal U \ne \emptyset}
  2. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall_{W \in \mathcal U}\ \Delta_{X} \subseteq W}
  3. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall_{V \in \mathcal U}\ (V \subseteq W \subseteq X\times X\ \Rightarrow\ W \in \mathcal U)}
  4. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall_{V, W \in \mathcal U}\ V \cap W^{-1} \in \mathcal U}
  5. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall_{W\in \mathcal U}\exists_{V\in \mathcal U}\ V \circ V \subseteq W}

Members of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal U} are called entourages.

Two extreme examples

The single element family Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal U := \{X\times X\}} is a uniform structure in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X} ; it is called the weakest uniform structure (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X} ).

Family

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal U\ :=\ \{W \subseteq X\times X : \Delta_X \subseteq W\}}

is a uniform structure in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X} too; it is called the strongest uniform structure or the discrete uniform structure in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X} .

Metric spaces

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ (X, d)} be a metric space. Let

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B_t\ :=\ \{(x,y) : d(x,y) < t\}}

for every real Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ t > 0} .  Define now

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal B_d\ :=\ \{B_t : t > 0\}}

and finally:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal U_d\ :=\ \{W : \exists_t\ B_t\subseteq W \subseteq X\times X\}}

Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal U_d} is a uniform structure in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X} ; it is called the uniform structure induced by metric Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ d}   (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ X} ).