User:Milton Beychok/Sandbox: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Milton Beychok
imported>Milton Beychok
Line 1: Line 1:
'''Pressure ''' (symbol: 'p') is the [[force (physics)|force]] over an [[area]] applied to an object in a direction [[surface normal|perpendicular]] to the surface.  '''Gauge pressure''' is the pressure relative to the local atmospheric or ambient pressure.
'''Pressure ''' (symbol: 'p') is the [[force (physics)|force]] over an [[area]] applied to an object in a direction [[surface normal|perpendicular]] to the surface.  '''Gauge pressure''' is the pressure relative to the local atmospheric or ambient pressure.


== Definition ==
Pressure is an effect which occurs when a ''Force'' is applied on a surface.The symbol of Pressure is ''p'' which can also be written as ''P'' .


=== Formula ===
=== Formula ===
{{Conjugate variables (thermodynamics)}}
 
Mathematically:
Mathematically:
:<math>
:<math>p = \frac{F}{A}</math>
p = \frac{F}{A}\ \mbox{or}\ p = \frac{dF}{dA}
</math>


where:<br>
where:<br>
Line 18: Line 14:
Pressure is a scalar quantity, and has [[SI]] units of [[pascal (unit)|pascals]]; 1 Pa = 1 N/m<sup>2</sup>, and has [[United States customary units|EES]] units of [[Pounds per square inch|psi]]; 1 psi = 1 lb/in<sup>2</sup>.
Pressure is a scalar quantity, and has [[SI]] units of [[pascal (unit)|pascals]]; 1 Pa = 1 N/m<sup>2</sup>, and has [[United States customary units|EES]] units of [[Pounds per square inch|psi]]; 1 psi = 1 lb/in<sup>2</sup>.


Pressure is transmitted to solid boundaries or across arbitrary sections of fluid ''normal to'' these boundaries or sections at every point. It is a fundamental parameter in [[thermodynamics]] and it is [[conjugate variables (thermodynamics)|conjugate ]] to [[volume]].
It is a fundamental parameter in [[thermodynamics]] and it is [[conjugate variables (thermodynamics)|conjugate ]] to [[volume]].


=== Units ===
=== Units ===
[[Image:Barometer mercury column hg.jpg|thumb|right|Mercury column]]


The [[SI]] unit for pressure is the [[pascal (unit)|pascal]] (Pa), equal to one [[newton]] per [[square metre]] (N·m<sup>-2</sup> or kg·m<sup>-1</sup>·s<sup>-2</sup>). This special name for the unit was added in 1971; before that, pressure in SI was expressed simply as N/m<sup>2</sup>.
The [[SI]] unit for pressure is the [[pascal (unit)|pascal]] (Pa), equal to one [[newton]] per [[square metre]] (N·m<sup>-2</sup> or kg·m<sup>-1</sup>·s<sup>-2</sup>). This special name for the unit was added in 1971; before that, pressure in SI was expressed simply as N/m<sup>2</sup>.
Non-SI measures such as ''[[pound-force|pound]] per square [[inch]]'' ([[pound-force per square inch|psi]]) and ''[[bar (unit)|bar]]'' are used in parts of the world. The [[cgs]] unit of pressure is the [[barye]] (ba), equal to 1 dyn·cm<sup>-2</sup>. Pressure is sometimes expressed in grams-force/cm<sup>2</sup>, or as kg/cm<sup>2</sup><!--don't add an f to kg, this is making the point about usage without it--> and the like without properly identifying the force units. But using the names kilogram, gram, kilogram-force, or gram-force (or their symbols) as units of force is expressly forbidden in SI. The [[technical atmosphere]] (symbol: at) is 1 kgf/cm<sup>2</sup>.  In US Customary units, it is 14.696 psi.
Some [[meteorologist]]s prefer the hectopascal (hPa) for atmospheric air pressure, which is equivalent to the older unit [[millibar]] (mbar). Similar pressures are given in kilopascals (kPa) in most other fields, where the hecto prefix is rarely used. The unit ''inch of mercury'' ([[inHg]], see below) is still used in the United States. Oceanographers usually measure underwater pressure in [[decibar]]s (dbar) because an increase in pressure of 1 dbar is approximately equal to an increase in depth of 1 meter. [[Scuba diving|Scuba divers]] often use a manometric [[rule of thumb]]: the pressure exerted by ten metres depth of water is approximately equal to one atmosphere.
The [[standard atmosphere]] (atm) is an established constant. It is approximately equal to typical air pressure at earth mean sea level and is defined as follows:
:standard atmosphere = 101325&nbsp;[[pascal (unit)|Pa]] = 101.325&nbsp;kPa = 1013.25&nbsp;hPa.
Because pressure is commonly measured by its ability to displace a column of liquid in a [[manometer]], pressures are often expressed as a depth of a particular fluid (e.g., inches of water). The most common choices are [[Mercury (element)|mercury]] (Hg) and [[water]]; water is nontoxic and readily available, while mercury's high density allows for a shorter column (and so a smaller manometer) to measure a given pressure. The pressure exerted by a column of liquid of height ''h'' and density ''ρ'' is given by the hydrostatic pressure equation ''p = ρgh''. Fluid density and local gravity can vary from one reading to another depending on local factors, so the height of a fluid column does not define pressure precisely. When [[torr|millimeters of mercury]] or [[inHg|inches of mercury]] are quoted today, these units are not based on a physical column of mercury; rather, they have been given precise definitions that can be expressed in terms of SI units. The water-based units still depend on the density of water, a measured, rather than defined, quantity. These '''manometric units''' are still encountered in many fields. [[Blood pressure]] is measured in millimeters of mercury in most of the world, and lung pressures in centimeters of water are still common.
Presently or formerly popular pressure units include the following:
*[[atmosphere (unit)|atmosphere]]                                             
*manometric units:
**centimeter, inch, and millimeter of mercury ([[torr]])
**millimeter, [[centimeter of water|centimeter]], meter, inch, and foot of water
*imperial units:
**[[kip (unit)|kip]], [[ton]]-force (short), ton-force (long), pound-force, ounce-force, and [[poundal]] per square inch
**pound-force, ton-force (short), and ton-force (long)
*non-SI metric units:
**[[bar (unit)|bar]], decibar, [[millibar]]
**kilogram-force, or kilopond, per square centimetre ([[technical atmosphere]])
** gram-force and tonne-force (metric ton-force) per square centimetre
**[[barye]] ([[dyne]] per square centimetre)
**kilogram-force and tonne-force per square metre
**[[sthene]] per square metre ([[pieze]])


{{Pressure Units}}
{{Pressure Units}}
Line 71: Line 41:


This [[tensor]] may be divided up into a scalar part (pressure) and a traceless tensor part [[shear]]. The shear tensor gives the force in directions ''parallel'' to the surface, usually due to viscous or frictional forces. The stress tensor is sometimes called the pressure tensor, but in the following, the term "pressure" will refer only to the scalar pressure.
This [[tensor]] may be divided up into a scalar part (pressure) and a traceless tensor part [[shear]]. The shear tensor gives the force in directions ''parallel'' to the surface, usually due to viscous or frictional forces. The stress tensor is sometimes called the pressure tensor, but in the following, the term "pressure" will refer only to the scalar pressure.


==Negative pressures==
==Negative pressures==

Revision as of 00:44, 14 June 2008

Pressure (symbol: 'p') is the force over an area applied to an object in a direction perpendicular to the surface. Gauge pressure is the pressure relative to the local atmospheric or ambient pressure.


Formula

Mathematically:

where:

is the pressure,
is the normal force,
is the area.

Pressure is a scalar quantity, and has SI units of pascals; 1 Pa = 1 N/m2, and has EES units of psi; 1 psi = 1 lb/in2.

It is a fundamental parameter in thermodynamics and it is conjugate to volume.

Units

The SI unit for pressure is the pascal (Pa), equal to one newton per square metre (N·m-2 or kg·m-1·s-2). This special name for the unit was added in 1971; before that, pressure in SI was expressed simply as N/m2.

Template:Pressure Units

Examples

As an example of varying pressures, a finger can be pressed against a wall without making any lasting impression; however, the same finger pushing a thumbtack can easily damage the wall. Although the force applied to the surface is the same, the thumbtack applies more pressure because the point concentrates that force into a smaller area. Pressure is transmitted to solid boundaries or across arbitrary sections of fluid normal to these boundaries or sections at every point. Unlike stress, pressure is defined as a scalar quantity.

Another example is of a common knife. If we try and cut a fruit with the flat side it obviously won't cut. But if we take the thin side, it will cut smoothly. The reason is, the flat side has a greater surface area and so it does not cut the fruit. When we take the thin side, the surface area is reduced and so it cuts the fruit easily and quickly. This shows one of the good effects of Pressure.

The gradient of pressure is called the force density. For gases, pressure is sometimes measured not as an absolute pressure, but relative to atmospheric pressure; such measurements are called gauge pressure (also sometimes spelled gage pressure).[1] An example of this is the air pressure in an automobile tire, which might be said to be "220 kPa", but is actually 220 kPa above atmospheric pressure. Since atmospheric pressure at sea level is about 100 kPa, the absolute pressure in the tire is therefore about 320 kPa. In technical work, this is written "a gauge pressure of 220 kPa". Where space is limited, such as on pressure gauges, name plates, graph labels, and table headings, the use of a modifier in parentheses, such as "kPa (gauge)" or "kPa (absolute)", is permitted. In non-SI technical work, a gauge pressure of 32 psi is sometimes written as "32 psig", though the other methods explained above that avoid attaching characters to the unit of pressure are preferred.[2]

Gauge pressure is the relevant measure of pressure wherever one is interested in the stress on storage vessels and the plumbing components of fluidics systems. However, whenever equation-of-state properties, such as densities or changes in densities, must be calculated, pressures must be expressed in terms of their absolute values. For instance, if the atmospheric pressure is 100 kPa, a gas (such as helium) at 200 kPa (gauge) (300 kPa [absolute]) is 50 % more dense than the same gas at 100 kPa (gauge) (200 kPa [absolute]). Focusing on gauge values, one might erroneously conclude the first sample had twice the density of the second one.

Scalar nature

In a static gas, the gas as a whole does not appear to move. The individual molecules of the gas, however, are in constant random motion. Because we are dealing with an extremely large number of molecules and because the motion of the individual molecules is random in every direction, we do not detect any motion. If we enclose the gas within a container, we detect a pressure in the gas from the molecules colliding with the walls of our container. We can put the walls of our container anywhere inside the gas, and the force per unit area (the pressure) is the same. We can shrink the size of our "container" down to an infinitely small point, and the pressure has a single value at that point. Therefore, pressure is a scalar quantity, not a vector quantity. It has magnitude but no direction sense associated with it. Pressure acts in all directions at a point inside a gas. At the surface of a gas, the pressure force acts perpendicular (at right angle) to the surface.

A closely related quantity is the stress tensor σ, which relates the vector force F to the vector area A via

This tensor may be divided up into a scalar part (pressure) and a traceless tensor part shear. The shear tensor gives the force in directions parallel to the surface, usually due to viscous or frictional forces. The stress tensor is sometimes called the pressure tensor, but in the following, the term "pressure" will refer only to the scalar pressure.

Negative pressures

While pressures are generally positive, there are several situations in which negative pressures may be encountered:

  • When dealing in relative (gauge) pressures. For instance, an absolute pressure of 80 kPa may be described as a gauge pressure of -21 kPa (i.e., 21 kPa below an atmospheric pressure of 101 kPa).

References

  1. The preferred spelling varies by country and even by industry. Further, both spellings are often used within a particular industry or country. Industries in British English-speaking countries typically use the "gauge" spelling. Many of the largest American manufacturers of pressure transducers and instrumentation use the spelling "gage pressure" in their most formal documentation (Honeywell-Sensotec’s FAQ page and Fluke Corporation’s product search page).
  2. NIST, Rules and Style Conventions for Expressing Values of Quantities, Sect. 7.4.

External links