Gyrification: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Daniel Mietchen
(+subpages; help with ref formatting would be appreciated)
imported>Daniel Mietchen
(→‎See also: moved to bibliography)
Line 99: Line 99:
}}</ref>.  
}}</ref>.  


== See also ==
 
*[[Brain morphometry]]
*[[Cortical thickness]]


== References==
== References==
{{reflist}}
{{reflist}}

Revision as of 02:52, 23 April 2008

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Catalogs [?]
Addendum [?]
 
This editable Main Article is under development and subject to a disclaimer.

In brain anatomy, gyrification (also known as foliation) refers to the folding of the cerebral cortex during brain development in many vertebrate taxa, including songbirds, cetaceans and primates[1][2][3].

While the extent of cortical folding has been found to be partly determined by genetic factors[4], the underlying biomechanical mechanisms are not yet well understood. The overall folding pattern, however, can be mechanistically explained in terms of the cerebral cortex resembling a gel that buckles under the influence of non-isotropic forces[5][6]. Possible causes of the non-isotropy include thermal noise, variations in the number and timing of cell divisions, cell migration, cortical connectivity, pruning, brain size and metabolism (phospholipids in particular), all of which may interact[7][8].

The concept of gyrification is important for clinical diagnostics, since it is one of the parameters distinguishing patients with neuropsychiatric diseases like schizophrenia or Williams syndrome from healthy control populations[9].


References

  1. Hofman, M.A. (1989). "On the evolution and geometry of the brain in mammals.". Prog Neurobiol 32 (2): 137-58. Retrieved on 2008-04-22.
  2. Armstrong, E.; Schleicher, A.; Omran, H.; Curtis, M.; Zilles, K. (1995). "The Ontogeny of Human Gyrification". Cerebral Cortex 5 (1): 56-63. Retrieved on 2008-04-22.
  3. Mayhew, T.M.; Mwamengele, G.L.; Dantzer, V.; Williams, S. (1996). "The gyrification of mammalian cerebral cortex: quantitative evidence of anisomorphic surface expansion during phylogenetic and ontogenetic development.". Journal of Anatomy 188 (Pt 1): 53. Retrieved on 2008-04-22.
  4. Bartley, A.J.; Jones, D.W.; Weinberger, D.R.. "Genetic variability of human brain size and cortical gyral patterns". Brain 120 (2): 257-269. Retrieved on 2008-04-22.
  5. Van Essen, D.C. (1997). "A tension-based theory of morphogenesis and compact wiring in the central nervous system". Nature 385 (6614): 313-8. Retrieved on 2008-04-22.
  6. Mora, T.; Boudaoud, A. (2006). "Buckling of swelling gels". The European Physical Journal E - Soft Matter 20 (2): 119-124. Retrieved on 2008-04-22.
  7. Price, D.J. (2004). "Lipids make smooth brains gyrate". Trends in Neurosciences 27 (7): 362-364. Retrieved on 2008-04-22.
  8. Toro, R.; Perron, M.; Pike, B.; Richer, L.; Veillette, S.; Pausova, Z.; Paus, T. (2008). "Brain Size and Folding of the Human Cerebral Cortex". Cerebral Cortex. Retrieved on 2008-04-22.
  9. Schmitt, J.E.; Watts, K.; Eliez, S.; Bellugi, U.; Galaburda, A.M.; Reiss, A.L. (2002). "Increased gyrification in Williams syndrome: evidence using 3D MRI methods". Developmental Medicine & Child Neurology 44 (5): 292-295. DOI:10.1111/j.1469-8749.2002.tb00813.x. Research Blogging.