Gyrification: Difference between revisions
imported>Daniel Mietchen (+one ref) |
imported>Daniel Mietchen (+image) |
||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
[[Image:ComparitiveBrainSize.jpg|right|thumb|350px|{{#ifexist:Template:ComparitiveBrainSize.jpg/credit|{{ComparitiveBrainSize.jpg/credit}}<br/>|}}Comparative anatomy of brains from various vertebrate species.University of Wisconsin and Michigan State Comparative Mammalian Brain Collections and the National Museum of Health and Medicine]] | |||
In [[brain anatomy]], '''gyrification''' refers to the folding of the [[cerebral cortex]] during [[brain development]] in [[reptile]]s and [[mammal]]s, e.g. in [[turtles]], [[cetacean]]s and [[primate]]s<ref name=Hofman1989>{{cite journal | In [[brain anatomy]], '''gyrification''' refers to the folding of the [[cerebral cortex]] during [[brain development]] in [[reptile]]s and [[mammal]]s, e.g. in [[turtles]], [[cetacean]]s and [[primate]]s<ref name=Hofman1989>{{cite journal | ||
| author = Hofman, M.A. | | author = Hofman, M.A. |
Revision as of 03:21, 27 October 2008
In brain anatomy, gyrification refers to the folding of the cerebral cortex during brain development in reptiles and mammals, e.g. in turtles, cetaceans and primates[1][2][3][4][5][6]. In this process, gyri (ridges) and sulci (fissures) form on the outermost surface of the brain. The term gyrification is also sometimes used instead of the more common term foliation to describe the folding patterns of the cerebellum, which is highly convoluted in other taxa, too, e.g. in birds[7].
Developmental biomechanics
While the extent of cortical folding has been found to be partly determined by genetic factors[8][9][10][11], the underlying biomechanical mechanisms are not yet well understood. The overall folding pattern, however, can be mechanistically explained in terms of the cerebral cortex behaving as a gel that buckles under the influence of non-isotropic forces[12][13][14][15]. Possible causes of the non-isotropy include thermal noise, variations in the number and timing of cell divisions, cell migration, cortical connectivity, synaptic pruning, brain size and metabolism (phospholipids in particular), all of which may interact[16][17][18][19].
Medical relevance
This multitude of underlying processes has rendered the concept of gyrification increasingly important for clinical diagnostics in recent years, since gyrification in some areas of the human brain appears to reflect functional development[20] and thus to correlate with measures of intelligence[21], and disturbances in the folding pattern — as determined by non-invasive neuroimaging — can be taken as indicators of neuropsychiatric diseases if differences due to gender and age are accounted for [22]. Patients with schizophrenia or Williams syndrome, for example, can be readily distinguished from healthy control populations on the basis of gyrification measures[23][24].
Measures of gyrification
- Gyrification index
- Cortical complexity
- Global gyrification index
- Local gyrification index
- Curvature measures
References
- ↑ Hofman, M.A. (1989). "On the evolution and geometry of the brain in mammals.". Prog Neurobiol 32 (2): 137-58. DOI:10.1016/0301-0082(89)90013-0. Research Blogging. [e]
- ↑ Armstrong, E.; Schleicher, A.; Omran, H.; Curtis, M.; Zilles, K. (1995). "The Ontogeny of Human Gyrification". Cerebral Cortex 5 (1): 56-63.
- ↑ Mayhew, T.M.; Mwamengele, G.L.; Dantzer, V.; Williams, S. (1996). "The gyrification of mammalian cerebral cortex: quantitative evidence of anisomorphic surface expansion during phylogenetic and ontogenetic development.". Journal of Anatomy 188 (Pt 1): 53.
- ↑ Supèr, H.; Uylings, H.B.M. (2001), "The Early Differentiation of the Neocortex: a Hypothesis on Neocortical Evolution", Cerebral Cortex 11 (12): 1101–1109, DOI:10.1093/cercor/11.12.1101
- ↑ Sereno, M.I. & R.B. Tootell (2005), "From monkeys to humans: what do we now know about brain homologies?", Curr Opin Neurobiol 15 (2): 135–44, DOI:10.1016/j.conb.2005.03.014
- ↑ Neal, J.; M. Takahashi & M. Silva et al. (2007), "Insights into the gyrification of developing ferret brain by magnetic resonance imaging", Journal of Anatomy 210 (1): 66–77, DOI:10.1111/j.1469-7580.2006.00674.x
- ↑ Iwaniuk, A.N.; Hurd, P.L.; Wylie, D.R. (2006), "Comparative Morphology of the Avian Cerebellum: I. Degree of Foliation", Brain Behav Evol 68 (1): 45–62, DOI:10.1159/000093530
- ↑ Bartley, A.J.; Jones, D.W.; Weinberger, D.R.. "Genetic variability of human brain size and cortical gyral patterns". Brain 120 (2): 257-269.
- ↑ Chenn, Anjen; Walsh, Christopher A. (2002), "Regulation of Cerebral Cortical Size by Control of Cell Cycle Exit in Neural Precursors", Science 297 (5580): 365–9, DOI:10.1126/science.1074192 [e]
- ↑ Kippenhan, J. Shane; Rosanna K. Olsen & Carolyn B. Mervis et al. (2005), "Genetic Contributions to Human Gyrification: Sulcal Morphometry in Williams Syndrome", Journal of Neuroscience 25 (34): 7840, DOI:10.1523/JNEUROSCI.1722-05.2005
- ↑ Kerjan, G. & J.G. Gleeson (2007), "Genetic mechanisms underlying abnormal neuronal migration in classical lissencephaly", Trends in Genetics 23 (12): 623–630, DOI:10.1016/j.tig.2007.09.003 [e]
- ↑ Van Essen, D.C. (1997). "A tension-based theory of morphogenesis and compact wiring in the central nervous system". Nature 385 (6614): 313-8.
- ↑ Hilgetag, C.C. & H. Barbas (2005), "Developmental mechanics of the primate cerebral cortex", Anat Embryol (Berl) 210 (5-6): 411–7, DOI:10.1007/s00429-005-0041-5
- ↑ Mora, T.; Boudaoud, A. (2006). "Buckling of swelling gels". The European Physical Journal E - Soft Matter 20 (2): 119-124.
- ↑ Hilgetag, C.C. & H. Barbas (2006), "Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex", PLoS Comput Biol 2 (3): e22, DOI:10.1371/journal.pcbi.0020022
- ↑ Price, D.J. (2004). "Lipids make smooth brains gyrate". Trends in Neurosciences 27 (7): 362-364.
- ↑ Francis, F.; G. Meyer & C. Fallet-bianco et al. (2006), "Human disorders of cortical development: from past to present", European Journal of Neuroscience 23 (4): 877–893, DOI:10.1111/j.1460-9568.2006.04649.x
- ↑ Xu, G.; P.V. Bayly & L.A. Taber (2008), "Residual stress in the adult mouse brain", Biomech Model Mechanobiol, DOI:10.1007/s10237-008-0131-4
- ↑ Toro, R.; Perron, M.; Pike, B.; Richer, L.; Veillette, S.; Pausova, Z.; Paus, T. (2008). "Brain Size and Folding of the Human Cerebral Cortex". Cerebral Cortex.
- ↑ Dubois, J.; M. Benders & C. Borradori-tolsa et al. (2008), "Primary cortical folding in the human newborn: an early marker of later functional development", Brain 131 (8): 2028, DOI:10.1093/brain/awn137 [e]
- ↑ Lüders, Eileen; Narr, Katherine L.; Bilder, Robert M.; Szeszko, Philip R.; Gurbani, Mala N.; Hamilton, Liberty; Toga, Arthur W.; Gaser, Christian (2007), "Mapping the Relationship between Cortical Convolution and Intelligence: Effects of Gender", Cerebral Cortex 18 (9): 2019, DOI:10.1093/cercor/bhm227
- ↑ Lüders, E.; K.L. Narr & P.M. Thompson et al. (2004), "Gender differences in cortical complexity", Nat Neurosci 7 (8): 799–800, DOI:10.1038/nn1277
- ↑ White, T.; Andreasen, N.C.; Nopoulos, P.; Magnotta, V. (2003), "Gyrification abnormalities in childhood- and adolescent-onset schizophrenia", Biological Psychiatry 54 (4): 418–426, DOI:10.1016/S0006-3223(03)00065-9
- ↑ Schmitt, J.E.; Watts, K.; Eliez, S.; Bellugi, U.; Galaburda, A.M.; Reiss, A.L. (2002). "Increased gyrification in Williams syndrome: evidence using 3D MRI methods". Developmental Medicine & Child Neurology 44 (5): 292-295. DOI:10.1111/j.1469-8749.2002.tb00813.x. Research Blogging.
- CZ Live
- Biology Workgroup
- Computers Workgroup
- Health Sciences Workgroup
- Differential geometry Subgroup
- Image analysis Subgroup
- Neuroscience Subgroup
- Articles written in British English
- All Content
- Biology Content
- Computers Content
- Health Sciences Content
- Differential geometry tag
- Image analysis tag
- Neuroscience tag