User talk:Paul Wormer/scratchbook1: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
(New page: ==Rotations in <math>\mathbb{R}^3</math> == Consider a real 3×3 matrix '''R''' with columns '''r'''<sub>1</sub>, '''r'''<sub>2</sub>, '''r'''<sub>3</sub>, i.e., :<math> \mathbf{R} ...)
 
imported>Paul Wormer
No edit summary
Line 4: Line 4:
i.e.,
i.e.,
:<math>
:<math>
\mathbf{R} = \left(\mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r}_3 \right)
\mathbf{R} = \left(\mathbf{r}_1,\, \mathbf{r}_2,\, \mathbf{r}_3 \right)
</math>.
</math>.
The matrix '''R''' is ''orthogonal''  if
The matrix '''R''' is ''orthogonal''  if
Line 31: Line 31:
its column vectors form a left-handed set, i.e.,
its column vectors form a left-handed set, i.e.,
:<math>
:<math>
\mathbf{r}_i \times \mathbf{r}_j = - \sum_k \, \varepsilon_{ijk}
\mathbf{r}_i \times \mathbf{r}_j = - \sum_{k=1}^3 \, \varepsilon_{ijk}
\mathbf{r}_k \; .
\mathbf{r}_k \; .
</math>
</math>
Line 43: Line 43:
rotation &minus;1. This can be proved as follows:
rotation &minus;1. This can be proved as follows:
The determinant of a  3&times;3  matrix with column vectors  '''a''',
The determinant of a  3&times;3  matrix with column vectors  '''a''',
'''b''',  and '''c''' can be written as
'''b''',  and '''c''' can be written as [[scalar triple product#Triple product as determinant|scalar triple product]]
:<math>
:<math>
\det\left(\mathbf{a},\,\mathbf{b},\, \mathbf{c}\right) =
\mathbf{a} \cdot (\mathbf{b}\times\mathbf{c})
\mathbf{a} \cdot (\mathbf{b}\times\mathbf{c})
</math>.
</math>.
Line 54: Line 55:
\mathbf{r}_1 \cdot \mathbf{r}_k = \varepsilon_{231} =  1 .
\mathbf{r}_1 \cdot \mathbf{r}_k = \varepsilon_{231} =  1 .
</math>
</math>
Likewise the determinant is &minus;1 for an improper rotation, which ends the
Likewise the determinant is &minus;1 for an improper rotation.
proof.


====Theorem====
====Theorem====
Line 63: Line 63:
\mathbf{R} = \mathbf{R}_z (\omega_3 ) \; \mathbf{R}_y (\omega_2 ) \; \mathbf{R}_x (\omega_1 )
\mathbf{R} = \mathbf{R}_z (\omega_3 ) \; \mathbf{R}_y (\omega_2 ) \; \mathbf{R}_x (\omega_1 )
</math>
</math>
which is referred to as the ''z-y-x'' parametrization,
which is referred to as the ''Euler z-y-x parametrization'',
or also as
or also as
:<math>
:<math>
\mathbf{R} = \mathbf{R}_z (\alpha) \; \mathbf{R}_y (\beta ) \; \mathbf{R}_z (\gamma ) \quad
\mathbf{R} = \mathbf{R}_z (\alpha) \; \mathbf{R}_y (\beta ) \; \mathbf{R}_z (\gamma ) \quad
</math>
</math>
the ''z-y-z Euler parametrization''.
the ''Euler z-y-z parametrization''.


Here
Here the matrices representing rotations around the ''z'', ''y'', and ''x'' axis, respectively, over arbitrary angle &phi;, are
:<math>
:<math>
\mathbf{R}_z (\varphi ) \equiv
\mathbf{R}_z (\varphi ) \equiv
Line 92: Line 92:
</math>
</math>
====Proof====
====Proof====
First the ''z-y-x''-parametrization will be proved by describing an
First the Euler ''z-y-x''-parametrization will be proved by describing an
algorithm for the factorization of '''R'''.
algorithm for the factorization of '''R'''.
Consider to that end
Consider to that end the matrix product
:<math>
:<math>
\mathbf{R}_z (\omega_3 ) \, \mathbf{R}_y (\omega_2 ) =
\mathbf{R}_z (\omega_3 ) \, \mathbf{R}_y (\omega_2 ) =
Line 104: Line 104:
           (\mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 ) .
           (\mathbf{a}_1 , \mathbf{a}_2 , \mathbf{a}_3 ) .
</math>
</math>
The columns of the matrix product are for ease of reference designated by '''a'''<sub>1</sub>,  '''a'''<sub>2</sub>, and '''a'''<sub>3</sub>. 
Note that the multiplication by
Note that the multiplication by
'''R'''<sub>''x''</sub>(&omega;<sub>1</sub>) on the right
'''R'''<sub>''x''</sub>(&omega;<sub>1</sub>) on the right
does not affect the first column, so that '''r'''<sub>1</sub> =
does not affect the first column, so that '''a'''<sub>1</sub> =
'''a'''<sub>1</sub>.
'''r'''<sub>1</sub> (the first column of the matrix to be factorized).
Solve <math>\omega_2</math> and <math>\omega_3</math> from the first column of
Solve <math>\omega_2\;</math> and <math>\omega_3\;</math> from the first column of
'''R''',
'''R''',
:<math>
:<math>
\mathbf{r}_1 =
\mathbf{a}_1 =  
\begin{pmatrix}
\begin{pmatrix}
   \cos \omega_3 \; \cos \omega_2 \\
   \cos \omega_3 \; \cos \omega_2 \\
   \sin \omega_3 \; \cos \omega_2 \\
   \sin \omega_3 \; \cos \omega_2 \\
                   -\sin \omega_2 \\
                   -\sin \omega_2 \\
\end{pmatrix}.
\end{pmatrix} =
\begin{pmatrix}
  R_{11} \\
  R_{21} \\
  R_{31} \\
\end{pmatrix} \equiv \mathbf{r}_1 .  
</math>
</math>
This is possible. First solve <math>\omega_2</math> for <math> -\pi/2 \leq \omega_2
This is possible. First solve <math>\omega_2\;</math> for <math> -\pi/2 \leq \omega_2
\leq \pi/2</math> from
\leq \pi/2</math> from
:<math>
:<math>
\sin \omega_2 = - R_{31} \equiv - (\mathbf{r}_1 )_3.
\sin \omega_2 = - R_{31}. \,
</math>
</math>
Then solve <math>\omega_3</math> for <math>0 \leq \omega_3 \leq 2 \pi</math> from
Then solve <math>\omega_3\;</math> for <math>0 \leq \omega_3 \leq 2 \pi</math> from the two equations:
:<math>
:<math>
\begin{align}
\begin{align}
Line 130: Line 136:
\end{align}
\end{align}
</math>
</math>
This determines the vectors '''a'''<sub>2</sub> and
Knowledge of <math>\omega_2\;</math> and <math>\omega_3\;</math>  determines the vectors '''a'''<sub>2</sub> and '''a'''<sub>3</sub>.
'''a'''<sub>3</sub>.


Since '''a'''<sub>1</sub>, '''a'''<sub>2</sub> and
Since '''a'''<sub>1</sub>, '''a'''<sub>2</sub> and '''a'''<sub>3</sub> are the columns of a
'''a'''<sub>3</sub> are the columns of a
proper rotation matrix  they form an orthonormal right-handed system. The plane spanned by '''a'''<sub>2</sub> and '''a'''<sub>3</sub> is orthogonal to <math> \mathbf{a}_1  \equiv \mathbf{r}_1</math> and hence the plane contains <math>\mathbf{r}_2</math> and
proper rotation matrix  they form an orthonormal
<math>\mathbf{r}_3</math>. Thus the latter two vectors are a linear combination of the first two,
right-handed
system. The plane spanned by '''a'''<sub>2</sub> and
'''a'''<sub>3</sub> is orthogonal to
<math> \mathbf{a}_1  \equiv \mathbf{r}_1</math>
and hence contains <math>\mathbf{r}_2</math> and
<math>\mathbf{r}_3</math>. Thus,
:<math>
:<math>
( \mathbf{r}_2 , \mathbf{r}_3 ) = (\mathbf{a}_2 , \mathbf{a}_3 )
( \mathbf{r}_2 , \mathbf{r}_3 ) = (\mathbf{a}_2 , \mathbf{a}_3 )
Line 149: Line 148:
\end{pmatrix} .
\end{pmatrix} .
</math>
</math>
Since <math>\mathbf{r}_2 , \mathbf{a}_2 , \mathbf{a}_3</math> are
Since <math>\mathbf{r}_2,\; \mathbf{a}_2,\; \mathbf{a}_3</math> are
known unit vectors we can compute
known unit vectors we can compute
:<math>
:<math>
Line 157: Line 156:
\end{align}
\end{align}
</math>
</math>
These equations give <math>\omega_1</math> with <math> 0 \leq \omega_1 \leq 2 \pi</math>.
These equations give <math>\omega_1\;</math> with <math> 0 \leq \omega_1 \leq 2 \pi</math>.
Augment the matrix  to <math>\mathbf{r}_x(\omega_1)</math>, then
 
Augment the 2&times;2  matrix  to the 3&times;3 matrix <math>\mathbf{R}_x(\omega_1)</math>, then
:<math>
:<math>
\begin{align}
\begin{align}
\mathbf{R} \equiv& ( \mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r}_3 ) = (
\mathbf{R} \equiv ( \mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r}_3 ) = (
\mathbf{r}_1 , \mathbf{a}_2 , \mathbf{a}_3 )
\mathbf{r}_1 , \mathbf{a}_2 , \mathbf{a}_3 )
\mathbf{R}_x (\omega_1 ) \\
\mathbf{R}_x (\omega_1 )  
=& (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)\mathbf{R}_x (\omega_1 )
= (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)\mathbf{R}_x (\omega_1 )
= \mathbf{R}_z (\omega_3 ) \, \mathbf{R}_y (\omega_2 ) \, \mathbf{R}_x (\omega_1 ) .
= \mathbf{R}_z (\omega_3 ) \, \mathbf{R}_y (\omega_2 ) \, \mathbf{R}_x (\omega_1 ) .
\end{align}
\end{align}
</math>
</math>
This concludes the proof of the ''z-y-x'' parametrization.
This concludes the proof of the ''z-y-x'' parametrization.
The Euler ''z-y-z'' parametrization is obtained by a small modification of the previous proof. Solve
<math>\omega_2\;</math> and
<math>\omega_3\;</math> from <math>\mathbf{r}_3 = \mathbf{a}_3 </math> (the rightmost multiplication by '''R'''<sub>''z''</sub>(&omega;<sub>1</sub>) does not affect '''r'''<sub>3</sub>)
and then consider
:<math>
( \mathbf{r}_1, \; \mathbf{r}_2 ) = (\mathbf{a}_1, \; \mathbf{a}_2 )
\begin{pmatrix}
\cos \omega_1 & -\sin \omega_1 \\
\sin \omega_1 & \cos \omega_1 \\
\end{pmatrix}
</math>
or,
<math>
\mathbf{a}_1 \cdot \mathbf{r}_1 = \cos \omega_1 \; , \quad \mathbf{a}_2 \cdot
\mathbf{r}_1 = \sin
\omega_1 .
</math>
The equation for '''R''' can be written as
:<math>
( \mathbf{r}_1 , \mathbf{r}_2 , \mathbf{r}_3 ) =
( \mathbf{a}_1 , \mathbf{a}_2 , \mathbf{r}_3 ) \, \mathbf{R}_z (\omega_1 ) = \mathbf{R}_z (\omega_3 ) \,
\mathbf{R}_y (\omega_2 ) \, \mathbf{R}_z (\omega_1 ) \; ,
</math>
which proves the Euler ''z-y-z'' parametrization. It is common in this parametrization to write
:<math>
\omega_3 = \alpha,\quad \omega_2 = \beta, \quad \omega_1 = \gamma.
</math>

Revision as of 02:43, 1 May 2009

Rotations in

Consider a real 3×3 matrix R with columns r1, r2, r3, i.e.,

.

The matrix R is orthogonal if

The matrix R is a proper rotation matrix, if it is orthogonal and if r1, r2, r3 form a right-handed set, i.e.,

Here the symbol × indicates a cross product and is the antisymmetric Levi-Civita symbol,

and if two or more indices are equal.

The matrix R is an improper rotation matrix if its column vectors form a left-handed set, i.e.,

The last two equations can be condensed into one equation

by virtue of the the fact that the determinant of a proper rotation matrix is 1 and of an improper rotation −1. This can be proved as follows: The determinant of a 3×3 matrix with column vectors a, b, and c can be written as scalar triple product

.

Remember that for a proper rotation the columns of R are orthonormal and satisfy,

Likewise the determinant is −1 for an improper rotation.

Theorem

A proper rotation matrix R can be factorized thus

which is referred to as the Euler z-y-x parametrization, or also as

the Euler z-y-z parametrization.

Here the matrices representing rotations around the z, y, and x axis, respectively, over arbitrary angle φ, are

Proof

First the Euler z-y-x-parametrization will be proved by describing an algorithm for the factorization of R. Consider to that end the matrix product

The columns of the matrix product are for ease of reference designated by a1, a2, and a3. Note that the multiplication by Rx1) on the right does not affect the first column, so that a1 = r1 (the first column of the matrix to be factorized). Solve and from the first column of R,

This is possible. First solve for from

Then solve for from the two equations:

Knowledge of and determines the vectors a2 and a3.

Since a1, a2 and a3 are the columns of a proper rotation matrix they form an orthonormal right-handed system. The plane spanned by a2 and a3 is orthogonal to and hence the plane contains and . Thus the latter two vectors are a linear combination of the first two,

Since are known unit vectors we can compute

These equations give with .

Augment the 2×2 matrix to the 3×3 matrix , then

This concludes the proof of the z-y-x parametrization.

The Euler z-y-z parametrization is obtained by a small modification of the previous proof. Solve and from (the rightmost multiplication by Rz1) does not affect r3) and then consider

or, The equation for R can be written as

which proves the Euler z-y-z parametrization. It is common in this parametrization to write