imported>Chunbum Park |
imported>John Stephenson |
(118 intermediate revisions by 5 users not shown) |
Line 1: |
Line 1: |
| == '''[[Choked flow]]''' ==
| | {{:{{FeaturedArticleTitle}}}} |
| ----
| | <small> |
| The '''choked flow''' (often referred to as '''critical flow''') of a flowing [[gas]] is a limiting point which occurs under specific conditions when a gas at a certain [[pressure]] and [[temperature]] flows through a restriction<ref>A [[valve]], a [[convergent-divergent nozzle]] such as a [[de Laval nozzle]], an [[orifice plate]] hole, a leak in a gas pipeline or other gas container, a [[rocket engine]] exhaust nozzle, etc.</ref> into a lower pressure environment.
| | ==Footnotes== |
| | |
| As the gas flows through the smaller cross-sectional area of the restriction, its linear [[velocity]] must increase. The limiting point is reached when the linear gas velocity increases to the [[speed of sound]] ([[sonic velocity]]) in the gas. At that point, the [[mass]] flow rate (mass per unit of time) of the gas becomes independent of the downstream pressure, meaning that the mass flow rate can not be increased any further by further lowering of the downstream pressure. The physical point at which the choking occurs (i.e., the cross-sectional area of the restriction) is sometimes called the ''choke plane''. It is important to note that although the gas velocity becomes choked, the mass flow rate of the gas can still be increased by increasing the upstream pressure or by decreasing the upstream temperature.
| |
| | |
| The choked flow of gases is useful in many engineering applications because, under choked conditions, valves and calibrated orifice plates can be used to produce a particular mass flow rate. Choked flow in a [[de Laval nozzle]] as used in a [[rocket engine]] can be accelerated to [[supersonic]] linear velocities.
| |
| | |
| In the case of liquids, a different type of limiting condition (also known as choked flow) occurs when the [[Venturi effect]] acting on the liquid flow through the restriction decreases the liquid pressure to below that of the liquid [[vapor pressure]] at the prevailing liquid temperature. At that point, the liquid will partially "flash" into bubbles of vapor and the subsequent collapse of the bubbles causes [[cavitation]]. Cavitation is quite noisy and can be sufficiently violent to physically damage valves, pipes and associated equipment. In effect, the vapor bubble formation in the restriction limits the flow from increasing any further.<ref>[http://www.fisherregulators.com/technical/sizingcalculations/ Scroll to discussion of liquid flashing and cavitation]</ref><ref>[http://www.documentation.emersonprocess.com/groups/public/documents/book/cvh99.pdf Search document for "Choked"]</ref>
| |
| | |
| ===Conditions under which gas flow becomes choked===
| |
| | |
| All gases flow from upstream higher pressure sources to downstream lower pressure environments. Choked flow occurs when the ratio of the absolute upstream pressure to the absolute downstream pressure is equal to or greater than:
| |
| | |
| :<math>(1)</math> <font style="vertical-align:+15%;"><math>\big[(k+1)/2 \big]^{\,k/(k-1)}</math></font>
| |
| | |
| where <math>k</math> is the [[specific heat ratio]] of the discharged gas (sometimes called the [[isentropic expansion factor]] and sometimes denoted as <math>\gamma</math> ).
| |
| | |
| For many gases, <math>k</math> ranges from about 1.09 to about 1.41, and therefore the expression in '''(1)''' ranges from 1.7 to about 1.9, which means that choked velocity usually occurs when the absolute upstream vessel pressure is at least 1.7 to 1.9 times as high as the absolute downstream pressure.
| |
| | |
| ''[[Choked flow|.... (read more)]]''
| |
| | |
| {| class="wikitable collapsible collapsed" style="width: 90%; float: center; margin: 0.5em 1em 0.8em 0px;"
| |
| |-
| |
| ! style="text-align: center;" | [[Choked flow#References|notes]]
| |
| |-
| |
| |
| |
| {{reflist|2}} | | {{reflist|2}} |
| |}
| | </small> |
Latest revision as of 09:19, 11 September 2020
The Mathare Valley slum near Nairobi, Kenya, in 2009.
Poverty is deprivation based on lack of material resources. The concept is value-based and political. Hence its definition, causes and remedies (and the possibility of remedies) are highly contentious.[1] The word poverty may also be used figuratively to indicate a lack, instead of material goods or money, of any kind of quality, as in a poverty of imagination.
Definitions
Primary and secondary poverty
The use of the terms primary and secondary poverty dates back to Seebohm Rowntree, who conducted the second British survey to calculate the extent of poverty. This was carried out in York and was published in 1899. He defined primary poverty as having insufficient income to “obtain the minimum necessaries for the maintenance of merely physical efficiency”. In secondary poverty, the income “would be sufficient for the maintenance of merely physical efficiency were it not that some portion of it is absorbed by some other expenditure.” Even with these rigorous criteria he found that 9.9% of the population was in primary poverty and a further 17.9% in secondary.[2]
Absolute and comparative poverty
More recent definitions tend to use the terms absolute and comparative poverty. Absolute is in line with Rowntree's primary poverty, but comparative poverty is usually expressed in terms of ability to play a part in the society in which a person lives. Comparative poverty will thus vary from one country to another.[3] The difficulty of definition is illustrated by the fact that a recession can actually reduce "poverty".
Causes of poverty
The causes of poverty most often considered are:
- Character defects
- An established “culture of poverty”, with low expectations handed down from one generation to another
- Unemployment
- Irregular employment, and/or low pay
- Position in the life cycle (see below) and household size
- Disability
- Structural inequality, both within countries and between countries. (R H Tawney: “What thoughtful rich people call the problem of poverty, thoughtful poor people call with equal justice a problem of riches”)[4]
As noted above, most of these, or the extent to which they can be, or should be changed, are matters of heated controversy.
- ↑ Alcock, P. Understanding poverty. Macmillan. 1997. ch 1.
- ↑ Harris, B. The origins of the British welfare state. Palgrave Macmillan. 2004. Also, Oxford Dictionary of National Biography.
- ↑ Alcock, Pt II
- ↑ Alcock, Preface to 1st edition and pt III.