File:Ack4c.jpg: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
(== Summary == Importing file)
Tag: Server-side upload
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
== Summary ==
== Summary ==
{{Image_Details|user
Importing file
|description  =  [[Complex map]] of [[tetration]] to base <math>b=1.52598338517+0.0178411853321\, \mathrm i</math>
is shown with lines of constant <math>u</math>
and lines of constant <math>v</math>, while
<math>
u+\mathrm i v= \mathrm{tet}_b(x\!+\!\mathrm i y)
</math>
|author      = [[User:Dmitrii Kouznetsov|Dmitrii Kouznetsov]]
|date-created = 2014 August
|pub-country  = Japan
|notes        =  I use this image in the article
D.Kouznetsov. Holomorphic ackermanns. 2015, in preparation.
|versions    = http://mizugadro.mydns.jp/t/index.php/File:Ack4c.jpg
}}
 
== Licensing ==
{{CC|by|3.0}}
 
==[[C++]] Generator of map==
Files
[[ado.cin]],
[[conto.cin]],
[[filog.cin]],
[[TetSheldonIma.inc]],
[[GLxw2048.inc]]
should be loaded to the working directory in order to compile the code below.
 
<nowiki>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#define DB double
#define DO(x,y) for(x=0;x<y;x++)
#include <complex>
typedef std::complex<double> z_type;
#define Re(x) x.real()
#define Im(x) x.imag()
#define I z_type(0.,1.)
#include "conto.cin"
#include "filog.cin"
 
z_type b=z_type( 1.5259833851700000, 0.0178411853321000);
z_type a=log(b);
z_type Zo=Filog(a);
z_type Zc=conj(Filog(conj(a)));
DB A=32.;
 
z_type tetb(z_type z){ int k; DB t; z_type c, cu,cd;
#include "GLxw2048.inc"
int K=2048;
//#include "ima6.inc"
#include "TetSheldonIma.inc"
z_type E[2048],G[2048];
DO(k,K){c=F[k]; E[k]=log(c)/a; G[k]=exp(a*c);}
c=0.;
z+=z_type(0.1196573712872846, 0.1299776198056910);
DO(k,K){t=A*GLx[k];c+=GLw[k]*(G[k]/(z_type( 1.,t)-z)-E[k]/(z_type(-1.,t)-z));}
cu=.5-I/(2.*M_PI)*log( (z_type(1.,-A)+z)/(z_type(1., A)-z) );
cd=.5-I/(2.*M_PI)*log( (z_type(1.,-A)-z)/(z_type(1., A)+z) );
c=c*(A/(2.*M_PI)) +Zo*cu+Zc*cd;
return c;}
 
int main(){ int j,k,m,m1,n; DB x,y, p,q, t; z_type z,c,d;
int M=601,M1=M+1;
int N=461,N1=N+1;
 
DB X[M1],Y[N1], g[M1*N1],f[M1*N1], w[M1*N1]; // w is working array.
char v[M1*N1]; // v is working array
FILE *o;o=fopen("tetsheldonmap.eps","w");ado(o,602,202);
fprintf(o,"301 101 translate\n 10 10 scale\n");
DO(m,M1)X[m]=-30.+.1*(m);
DO(n,200)Y[n]=-10.+.05*n;
        Y[200]=-.01;
        Y[201]= .01;
for(n=202;n<N1;n++) Y[n]=-10.+.05*(n-1.);
for(m=-30;m<31;m++){if(m==0){M(m,-10.2)L(m,10.2)} else{M(m,-10)L(m,10)}}
for(n=-10;n<11;n++){ M( -30,n)L(30,n)}
fprintf(o,".008 W 0 0 0 RGB S\n");
DO(m,M1)DO(n,N1){g[m*N1+n]=9999; f[m*N1+n]=9999;}
 
DO(n,N1){y=Y[n];
          for(m=295;m<305;m++)
          {x=X[m]; //printf("%5.2f\n",x);
          z=z_type(x,y);
          c=tetb(z);
          p=Re(c);q=Im(c);
          if(p>-99. && p<99. && q>-99. && q<99. ){ g[m*N1+n]=p;f[m*N1+n]=q;}
          d=c;
          for(k=1;k<31;k++)
                { m1=m+k*10; if(m1>M) break;
                d=exp(a*d);
                p=Re(d);q=Im(d);
                if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;}
                }
          d=c;
          for(k=1;k<31;k++)
                { m1=m-k*10; if(m1<0) break;
                d=log(d)/a;
                p=Re(d);q=Im(d);
                if(p>-99. && p<99. && q>-99. && q<99. ){ g[m1*N1+n]=p;f[m1*N1+n]=q;}
                }
        }}
 
fprintf(o,"1 setlinejoin 2 setlinecap\n"); p=1;q=.5;
for(m=-10;m<10;m++)for(n=2;n<10;n+=2)conto(o,f,w,v,X,Y,M,N,(m+.1*n),-q, q); fprintf(o,".02 W 0 .6 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N,-(m+.1*n),-q, q); fprintf(o,".02 W .9 0 0 RGB S\n");
for(m=0;m<10;m++) for(n=2;n<10;n+=2)conto(o,g,w,v,X,Y,M,N, (m+.1*n),-q, q); fprintf(o,".02 W 0 0 .9 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.-m),-p,p); fprintf(o,".08 W .9 0 0 RGB S\n");
for(m=1;m<10;m++) conto(o,f,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 .9 RGB S\n");
                    conto(o,f,w,v,X,Y,M,N, (0. ),-p,p); fprintf(o,".08 W .6 0 .6 RGB S\n");
for(m=-9;m<10;m++) conto(o,g,w,v,X,Y,M,N, (0.+m),-p,p); fprintf(o,".08 W 0 0 0 RGB S\n");
fprintf(o,"showpage\n%c%cTrailer",'%','%'); fclose(o);
        system("epstopdf tetsheldonmap.eps");
        system( "open tetsheldonmap.pdf");
        getchar(); system("killall Preview");
}
</nowiki>
 
==[[Latex]] generator of labels==
 
<nowiki>
\documentclass[12pt]{article}
\paperwidth 640px
\paperheight 1006px
\textwidth 1394px
\textheight 1300px
\topmargin -104px
\oddsidemargin -92px
\usepackage{graphics}
\usepackage{rotating}
\newcommand \sx {\scalebox}
\newcommand \rot {\begin{rotate}}
\newcommand \ero {\end{rotate}}
\newcommand \ing {\includegraphics}
\newcommand \rmi {\mathrm{i}}
\begin{document}
{\begin{picture}(608,1006) %\put(12,0){\ing{penma}}
\put(0,0){\ing{acker2}}
\put(281,988){\sx{3.}{$y$}}
\put(279,895){\sx{3.}{$6$}}
\put(279,795){\sx{3.}{$5$}}
\put(279,694){\sx{3.}{$4$}}
\put(279,594){\sx{3.}{$3$}}
\put(279,468){\sx{3.}{$\mathrm e$}}
\put(279,494){\sx{3.}{$2$}}
\put(279,394){\sx{3.}{$1$}}
\put(279,294){\sx{3.}{$0$}}
\put(258,193){\sx{3.}{$-1$}}
\put(258, 93){\sx{3.}{$-2$}}
\put( 80,274){\sx{3.}{$-2$}}
\put(180,274){\sx{3.}{$-1$}}
\put(296,274){\sx{3.}{$0$}}
\put(396,274){\sx{3.}{$1$}}
\put(496,274){\sx{3.}{$2$}}
\put(586,274){\sx{3.}{$x$}}
%
%\put(242,620){\sx{1.8}{\rot{85}$y\!=\!\mathcal{A}(4,x)\!=\! A_2(x\!+\!3)\!-\!3\!=\!\mathrm{tet}_2(x\!+\!3)\!-\!3$\ero}}
\put(248,720){\sx{1.8}{\rot{85}$y\!=\!\mathcal{A}(4,x)\!=\! A_{2,4}(x\!+\!3)\!-\!3$\ero}}
\put(312,720){\sx{1.8}{\rot{80}$y\!=\!\mathcal{A}(3,x)\!=\! A_{2,3}(x\!+\!3)\!-\!3$\ero}}
\put(348,712){\sx{1.8}{\rot{63}$y\!=\!\mathcal{A}(2,x)\!=\! A_{2,2}(x\!+\!3)\!-\!3$\ero}}
\put(314,526){\sx{1.8}{\rot{45}$y\!=\!\mathcal{A}(1,x)\!=\! A_{2,1}(x\!+\!3)\!-\!3$\ero}}
 
%\put(438,714){\sx{1.8}{\rot{85}$y\!=\!\mathrm{pen}(x)$\ero}}
%\put(538,912){\sx{1.8}{\rot{82}$y\!=\!\mathrm{tet}_2(x)$\ero}}
\put(526,822){\sx{1.8}{\rot{82}$y\!=\!A_{2,4}(x)\!=\!\mathrm{tet}_2(x)$\ero}}
%\put(578,892){\sx{1.8}{\rot{73}$y\!=\!2^x$\ero}}
\put(566,858){\sx{1.8}{\rot{73}$y\!=\!A_{2,3}(x)\!=\!2^x$\ero}}
\put(566,792){\sx{1.8}{\rot{62}$y\!=\!A_{2,2}(x)\!=\!\mathrm{2}x$\ero}}
%\put(478,628){\sx{1.8}{\rot{50}$y\!=\!\mathrm{e}\!+\!x$\ero}}
\put(520,696){\sx{1.96}{\rot{44}$y\!=\!A_{2,1}(x)\!=\!2\!+\!x$\ero}}
%
%\put(86,222){\sx{1.9}{\rot{11}$y\!=\!\mathrm{exp}(x)$\ero}}
%\put(20,30){\sx{1.9}{\rot{30}$y\!=\!\mathrm{pen}(x)$\ero}}
\put(32,326){\sx{1.9}{\rot{3}$y\!=\!2^x$\ero}}
\put(132,4){\sx{1.9}{\rot{81}$y\!=\!\mathrm{tet}_2(x)$\ero}}
\put(178,8){\sx{1.9}{\rot{66}$y\!=\!\mathrm{2} x$\ero}}
%
%\put(308, 13){\sx{2.2}{$y\!=\!L_{\mathrm e,4,0}$}}
\end{picture}
\end{document}
</nowiki>
 
==Refrences==
 
http://www.ams.org/mcom/2009-78-267/S0025-5718-09-02188-7/home.html <br>
http://www.ils.uec.ac.jp/~dima/PAPERS/2009analuxpRepri.pdf <br>
http://mizugadro.mydns.jp/PAPERS/2009analuxpRepri.pdf
D.Kouznetsov. (2009). Solution of F(z+1)=exp(F(z)) in the complex z-plane. [[Mathematics of Computation]], 78: 1647-1670.
 
https://www.morebooks.de/store/ru/book/Суперфункции/isbn/978-3-659-56202-0 <br>
http://www.ils.uec.ac.jp/~dima/BOOK/202.pdf <br>
http://mizugadro.mydns.jp/BOOK/202.pdf
Д.Кузнецов. [[Суперфункции]]. [[Lambert Academic Publishing]], 2014. (In Russian), DOI:10.1090/S0025-5718-09-02188-7. Page 257, Figure 18.8.
 
http://mizugadro.mydns.jp/t/index.php/File:Ack4c.jpg
 
D.Kouznetsov. Holomorphic ackermanns. 2015, in preparation.
 
[[Category:Book]]
[[Category:BookPlot]]
[[Category:Tetration]]
[[Category:Natural tetration]]
[[Category:Complex map]]
[[Category:AMS]]
[[Category:C++]]
[[Category:Latex]]
[[Category:TORI]]

Latest revision as of 18:51, 11 March 2022

Summary

Importing file

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current18:51, 11 March 2022Thumbnail for version as of 18:51, 11 March 20225,130 × 1,760 (1.92 MB)Maintenance script (talk | contribs)== Summary == Importing file

The following page uses this file:

Metadata