User:John R. Brews/Sandbox: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>John R. Brews
imported>John R. Brews
Line 18: Line 18:


A rotation of the coordinate axes will alter the components of '''v''' and '''w'''. Suppose the rotation labeled ''A'' is described by the equation:
A rotation of the coordinate axes will alter the components of '''v''' and '''w'''. Suppose the rotation labeled ''A'' is described by the equation:
:<math> \mathbf {\hat {e_i}} = \Sigma_j A_{ij} \mathbf {\hat {e}'_j} \ , </math>  
:<math> \mathbf {\hat {e}'_i} = \Sigma_j A_{ij} \mathbf {\hat {e}_j} \ , </math>
where '''v’''' = '''v''' because '''v''' is a vector representing some physical quantity, say the velocity of a particle.
 
Then:
:<math>\mathbf {\hat {e}_i} = \Sigma_j A^{-1}_{ij} \mathbf {\hat {e}'_j} \ , </math>  
 
Then:
 
:<math>\mathbf v = \sum_i v_i \mathbf {\hat {e}_i} = \sum_j v'_j \mathbf {\hat {e}'_j} \ , </math>
and
:<math>\mathbf v = \sum_i v_i \sum_j A^{-1}_{ij}  \mathbf {\hat {e}'_j} = \sum_i \sum_k \chi_{ik} w_k \sum_j A^{-1}_{ij}  \mathbf {\hat {e}'_j} \ , </math>
 
:<math>\mathbf w = \sum_m w'_m \sum_k A_{mk}  \mathbf {\hat {e}_k} \ ,</math>
 
:<math>\mathbf v = \sum_i \sum_k \chi_{ik} \sum_m w'_m  A_{mk}  \sum_j A^{-1}_{ij}  \mathbf {\hat {e}'_j} = \sum_m \chi'_{jm} w'_m \mathbf {\hat {e}'_j} \ , </math>
 
so, to be a tensor, the components of <math>\overleftrightarrow\boldsymbol{ \Chi}</math>  transform as:
:<math>\chi'_{jm}=  \sum_i \sum_k \chi_{ik}  A_{mk} A^{-1}_{ij} </math>
 
More directly:
:<math> \mathbf v' =  A \mathbf v =  A \overleftrightarrow\boldsymbol{ \Chi} \mathbf w = A  \overleftrightarrow{\boldsymbol {\Chi}}  A^{-1}  A \mathbf w =  A  \overleftrightarrow{\boldsymbol {\Chi}}  A^{-1} \mathbf w' \ ,</math>
:<math> \mathbf v' =  A \mathbf v =  A \overleftrightarrow\boldsymbol{ \Chi} \mathbf w = A  \overleftrightarrow{\boldsymbol {\Chi}}  A^{-1}  A \mathbf w =  A  \overleftrightarrow{\boldsymbol {\Chi}}  A^{-1} \mathbf w' \ ,</math>


which represents the same relationship provided:
where '''v’''' = '''v''' because '''v''' is a vector representing some physical quantity, say the velocity of a particle. The new equation represents the same relationship provided:


:<math>\overleftrightarrow\boldsymbol{ \Chi}  = A  \overleftrightarrow {\boldsymbol {\Chi}}A^{-1} \ .</math>
:<math>\overleftrightarrow\boldsymbol{ \Chi}  = A  \overleftrightarrow {\boldsymbol {\Chi}}A^{-1} \ .</math>

Revision as of 12:45, 17 December 2010

Tensor

In physics a tensor in its simplest form is a proportionality factor between two vector quantities that may differ in both magnitude and direction, and which is a relation that remains the same under changes in the coordinate system. Mathematically this relationship in some particular coordinate system is:

or, introducing unit vectors êj along the coordinate axes:

where v is a vector with components {vj} and w is another vector with components {wj} and the quantity = {χij} is a tensor. Because v and w are vectors, they are physical quantities independent of the coordinate axes chosen to find their components. Likewise, if this relation between vectors constitutes a physical relationship, then the above connection between v and w expresses some physical fact that transcends the particular coordinate system where = {χij}.

A rotation of the coordinate axes will alter the components of v and w. Suppose the rotation labeled A is described by the equation:

Then:

and

so, to be a tensor, the components of transform as:

More directly:

where v’ = v because v is a vector representing some physical quantity, say the velocity of a particle. The new equation represents the same relationship provided:


This example is a second rank tensor. The idea is extended to third rank tensors that relate a vector to a second rank tensor, as when electric polarization is related to stress in a crystal, and to fourth rank tensors that relate two second rank tensors, and so on.

Tensors can relate vectors of different dimensionality, as in the relation:

Young, p 308 Akivis p. 55 p1 p6 tensor algebra p. 1 intro p. 427; ch 14 Weyl What is a tensor