Volatility (chemistry): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Milton Beychok
m (Wiki linked the word vapor)
mNo edit summary
 
(11 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{subpages}}
{{subpages}}
{{Dambigbox|Volatilty (chemstry)|Volatility}}


In [[chemistry]] and [[physics]], '''volatility''' is a term used to characterize the tendency of a substance to vaporize.<ref>'''Note:''' To vaporize means to become a [[vapor]], the gaseous state of the substance.</ref> It is directly related to a substance' s [[vapor pressure]]. At a given [[temperature]], a substance with a higher vapor pressure will vaporize more readily than a substance with a lower vapor pressure.<ref>[http://www.bae.uky.edu/~snokes/BAE549thermo/gasesvapor.htm Gases and Vapor] ([[University of Kentucky]] website)</ref><ref>{{cite book|author=James G. Speight|title=The Chemistry and Technology of Petroleum|edition=4th Edition|publisher=CRC Press|date=2006|isbn=0-8493-9067-2}}</ref><ref name=Kister>{{cite book|author=Kister, Henry Z.|title=[[Distillation Design]]|edition=1st Edition|publisher=McGraw-Hill|year=1992|isbn=0-07-034909-6}}</ref> In other words, at a given temperature, the more volatile the substance the higher will be the pressure of the vapor in dynamic equilibrium with its vaporizing substance&mdash;i.e., when the rates at which molecules escape from and return into the vaporizing substance are equal.
In [[chemistry]] and [[physics]], '''volatility''' is a term used to characterize the tendency of a substance to vaporize.<ref>'''Note:''' To vaporize means to become a [[vapor]], the gaseous state of the substance.</ref> It is directly related to a substance' s [[vapor pressure]]. At a given [[temperature]], a substance with a higher vapor pressure will vaporize more readily than a substance with a lower vapor pressure.<ref>[http://www.bae.uky.edu/~snokes/BAE549thermo/gasesvapor.htm Gases and Vapor] ([[University of Kentucky]] website)</ref><ref>{{cite book|author=James G. Speight|title=The Chemistry and Technology of Petroleum|edition=4th Edition|publisher=CRC Press|date=2006|isbn=0-8493-9067-2}}</ref><ref name=Kister>{{cite book|author=Kister, Henry Z.|title=[[Distillation Design]]|edition=1st Edition|publisher=McGraw-Hill|year=1992|isbn=0-07-034909-6}}</ref> In other words, at a given temperature, the more volatile the substance the higher will be the pressure of the vapor in equilibrium with its vaporizing substance &mdash; i.e., when the rates at which molecules escape from and return into the vaporizing substance are equal.


In common usage, the term applies primarily to [[liquid]]s. However, it may also be used to characterize the process of  [[Sublimation (chemistry)|sublimation]] by which certain [[solid]] substances such as [[ammonium chloride]] (NH<sub>4</sub>Cl) and [[dry ice]], which is solid [[carbon dioxide]] (CO<sub>2</sub>), change directly from their solid form to a vapor without becoming a liquid.
In common usage, the term applies primarily to [[liquid]]s. However, it may also be used to characterize the process of  [[Sublimation (chemistry)|sublimation]] by which certain [[solid]] substances such as [[ammonium chloride]] (NH<sub>4</sub>Cl) and [[dry ice]], which is solid [[carbon dioxide]] (CO<sub>2</sub>), change directly from their solid form to a vapor without becoming a liquid.
Line 11: Line 12:


{{Main|Vapor pressure|boiling point|Antoine equation}}
{{Main|Vapor pressure|boiling point|Antoine equation}}
The vapor pressure of a substance is the pressure at which its gaseous (vapor) phase is in equilibrium with its liquid or solid phase. It is a measure of the 'readiness' of [[molecule]]s and [[atom]]s to escape from a liquid or solid.  
The vapor pressure of a substance is the pressure at which its gaseous (vapor) phase is in equilibrium with its liquid or solid phase. It is a measure of the tendency of [[molecule]]s and [[atom]]s to escape from a liquid or solid.  


At [[atmospheric pressure]]s, when a liquid's vapor pressure increases with increasing temperatures to the point at which it equals the atmospheric pressure, the liquid has reached its [[boiling point]], namely, the temperature at which the liquid changes its state from a liquid to a gas throughout its bulk. That temperature is very commonly referred to as the liquid's ''normal boiling point''.
At [[atmospheric pressure]]s, when a liquid's vapor pressure increases with increasing temperatures to the point at which it equals the atmospheric pressure, the liquid has reached its [[boiling point]], namely, the temperature at which the liquid changes its state from a liquid to a gas throughout its bulk. That temperature is very commonly referred to as the liquid's ''normal boiling point''.


Not surprisingly, a liquid's normal boiling point will be at a lower temperature the greater 'readiness' of its molecules to escape from the liquid, namely, the higher its vapor pressure. In other words, the higher is the vapor pressure of a liquid, the higher is the volatility and the lower is the normal boiling point of the liquid. The adjacent vapor pressure chart graphs the dependency of vapor pressure upon temperature for a variety of liquids<ref name=Perry>{{cite book|author=R.H. Perry and D.W. Green (Editors)|title=Perry's Chemical Engineers' Handbook | edition=7th Edition|publisher=McGraw-Hill|year=1997|id=ISBN 0-07-049842-5}}</ref> and also confirms that liquids with higher vapor pressures have lower normal boiling points.
Not surprisingly, a liquid's normal boiling point will be at a lower temperature the greater is the tendency of its molecules to escape from the liquid, namely, the higher is its vapor pressure. In other words, the higher is the vapor pressure of a liquid, the higher is the volatility and the lower is the normal boiling point of the liquid. The adjacent vapor pressure chart graphs the dependency of vapor pressure upon temperature for a variety of liquids<ref name=Perry>{{cite book|author=R.H. Perry and D.W. Green (Editors)|title=Perry's Chemical Engineers' Handbook | edition=7th Edition|publisher=McGraw-Hill|year=1997|id=ISBN 0-07-049842-5}}</ref> and also confirms that liquids with higher vapor pressures have lower normal boiling points.


For example, at any given temperature, methyl chloride (CH<sub>3</sub>Cl) has the highest vapor pressure of any of the liquids graphed in the chart. It also has the lowest normal boiling point (−26 °C), which is where its vapor pressure curve (the blue line) intersects the horizontal pressure line of one [[atmosphere (unit)|atmosphere]] (atm) of absolute vapor pressure.
For example, at any given temperature, methyl chloride (CH<sub>3</sub>Cl) has the highest vapor pressure of any of the liquids graphed in the chart. It also has the lowest normal boiling point (−26 °C), which is where its vapor pressure curve (the blue line) intersects the horizontal pressure line of one [[atmosphere (unit)|atmosphere]] (atm) of absolute vapor pressure.


In terms of [[intermolecular forces]], the boiling point represents the temperature at which the liquid molecules possess enough [[kinetic energy]] to overcome the various intermolecular attractions binding the molecules to each other within the liquid. Therefore the boiling point is also an indicator of the strength of those attractive forces. The higher the intermolecular attractive forces are, the more difficult it is for molecules to escape from the liquid and hence the lower is the vapor pressure of the liquid. The lower the vapor pressure of the liquid, the higher the temperature must be to initiate boiling. Thus, the higher the intermolecular attractive forces are, the higher is the normal boiling point.<ref>[http://www.chem.lsu.edu/lucid/subjectinfo/liquids.html The Nature of Intermolecular Forces] From the [[Louisiana State University]] Chemistry Department website.</ref>
In terms of [[intermolecular forces]], the boiling point represents the temperature at which the liquid molecules possess enough [[kinetic energy]] to overcome the various intermolecular attractions binding the molecules to each other within the liquid. Therefore the boiling point is also an indicator of the strength of those attractive forces. The higher the intermolecular attractive forces are, the more difficult it is for molecules to escape from the liquid and hence the lower is the vapor pressure of the liquid. The lower the vapor pressure of the liquid, the higher the temperature must be to initiate boiling. Thus, the higher the intermolecular attractive forces are, the higher is the normal boiling point.<ref>[http://itl.chem.ufl.edu/2045/lectures/lec_g.html The Forces Between Molecules], Department of Chemistry, University of Florida.</ref><ref>[https://www.chem.unsw.edu.au/coursenotes/CHEM1/nonunipass/hainesIMF/whatareIMF.html Intermolecular Forces], School of Chemistry, the University of New South Wales, Sydney, Australia.</ref>


== Relative volatility ==
== Relative volatility ==
Line 33: Line 34:
There is no universally accepted definition of VOCs. Some regulatory entities define them in terms of their vapor pressure at ordinary temperatures, or their normal boiling points, or how many carbon atoms they contain per molecule, and others define them in terms of their [[photochemical reactivity]].
There is no universally accepted definition of VOCs. Some regulatory entities define them in terms of their vapor pressure at ordinary temperatures, or their normal boiling points, or how many carbon atoms they contain per molecule, and others define them in terms of their [[photochemical reactivity]].


The [[U.S. Environmental Protection Agency]] currently defines them as any compound of [[carbon]], excluding [[carbon monoxide]], [[carbon dioxide]], [[carbonic acid]], metallic [[carbide]]s or [[carbonate]]s, and [[ammonium carbonate]], which participates in [[atmospheric photochemical reaction]]s (i.e., the reactions that produce photochemical [[smog]]. However, any such carbon compounds that have been determined to have a low photochemical reactivity, and specifically listed in the regulation, are exempted from regulation.<ref>U.S. Code of Federal Regulations: 40 CFR 51.100(s) - Definition - Volatile organic compounds (VOC) </ref>
The [[U.S. Environmental Protection Agency]] currently defines them as any compound of [[carbon]], excluding [[carbon monoxide]], [[carbon dioxide]], [[carbonic acid]], metallic [[carbide]]s or [[carbonate]]s, and [[ammonium carbonate]], which participates in [[atmospheric photochemical reaction]]s (i.e., the reactions that produce photochemical [[smog]]). However, any such carbon compounds that have been determined to have a low photochemical reactivity, and specifically listed in the regulation, are exempted from regulation.<ref>U.S. Code of Federal Regulations: 40 CFR 51.100(s) - Definition - Volatile organic compounds (VOC) </ref>


==Special definitions==
==Special definitions==
Line 43: Line 44:


=== Cosmetics and flavorings ===
=== Cosmetics and flavorings ===
Certain volatile oils obtained from plants have distinctive, pleasant aromas which are used in [[cosmetics]] and [[food flavorings]]. These oils are commonly referred to as '''''[[essential oils]]'''''
Certain volatile oils obtained from plants have distinctive, pleasant aromas which are used in [[cosmetics]] and [[food flavorings]]. These oils are commonly referred to as '''''[[essential oils]]'''''.
 
=== Coal ===
=== Coal ===
[[Coal]]s contain a certain amount of '''''volatile matter''''', defined as the portion of a coal sample which, when heated in the absence of air, is released as [[Inorganic chemistry|inorganic]] and organic gases.
[[Coal]]s contain a certain amount of '''''volatile matter''''', defined as the portion of a coal sample which, when heated in the absence of air, is released as [[Inorganic chemistry|inorganic]] and organic gases.
Line 50: Line 51:
=== Anesthetics ===
=== Anesthetics ===
[[Anesthetics|Inhalational anesthetics]], commonly referred to as '''''volatile anesthetics''''' are organic liquids at room temperature which are easily vaporized. Some examples are:[[ halothane]], [[isoflurane]] and [[sevoflurane]].
[[Anesthetics|Inhalational anesthetics]], commonly referred to as '''''volatile anesthetics''''' are organic liquids at room temperature which are easily vaporized. Some examples are:[[ halothane]], [[isoflurane]] and [[sevoflurane]].
 
<!--
== Special areas of volatility research and technology development ==
== Special areas of volatility research and technology development ==


Line 76: Line 77:


A comprehensive review of the environmental fate and toxicity  of ionic liquids concluded that their low volatility does not eliminate potential environmental hazards and may have serious adverse consequences for aquatic and terrestrial ecosystems. That review recommends more research and more studies be conducted into the environmental aspects of ionic liquids.<ref name=Pham/>
A comprehensive review of the environmental fate and toxicity  of ionic liquids concluded that their low volatility does not eliminate potential environmental hazards and may have serious adverse consequences for aquatic and terrestrial ecosystems. That review recommends more research and more studies be conducted into the environmental aspects of ionic liquids.<ref name=Pham/>
 
-->
== References ==
== References ==
{{reflist}}
{{reflist}}
[[Category:Suggestion Bot Tag]]

Latest revision as of 07:00, 6 November 2024

This article is developed but not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable, developed Main Article is subject to a disclaimer.
This article is about Volatilty (chemstry). For other uses of the term Volatility, please see Volatility (disambiguation).

In chemistry and physics, volatility is a term used to characterize the tendency of a substance to vaporize.[1] It is directly related to a substance' s vapor pressure. At a given temperature, a substance with a higher vapor pressure will vaporize more readily than a substance with a lower vapor pressure.[2][3][4] In other words, at a given temperature, the more volatile the substance the higher will be the pressure of the vapor in equilibrium with its vaporizing substance — i.e., when the rates at which molecules escape from and return into the vaporizing substance are equal.

In common usage, the term applies primarily to liquids. However, it may also be used to characterize the process of sublimation by which certain solid substances such as ammonium chloride (NH4Cl) and dry ice, which is solid carbon dioxide (CO2), change directly from their solid form to a vapor without becoming a liquid.

Any substance with a significant vapor pressure at temperatures of about 20 to 25 °C (68 to 77 °F) is very often referred to as being volatile.

Vapor pressure, temperature and boiling point

(PD) Image: Milton Beychok
Example vapor pressure graphs of various liquids.
For more information, see: Vapor pressure, boiling point, and Antoine equation.

The vapor pressure of a substance is the pressure at which its gaseous (vapor) phase is in equilibrium with its liquid or solid phase. It is a measure of the tendency of molecules and atoms to escape from a liquid or solid.

At atmospheric pressures, when a liquid's vapor pressure increases with increasing temperatures to the point at which it equals the atmospheric pressure, the liquid has reached its boiling point, namely, the temperature at which the liquid changes its state from a liquid to a gas throughout its bulk. That temperature is very commonly referred to as the liquid's normal boiling point.

Not surprisingly, a liquid's normal boiling point will be at a lower temperature the greater is the tendency of its molecules to escape from the liquid, namely, the higher is its vapor pressure. In other words, the higher is the vapor pressure of a liquid, the higher is the volatility and the lower is the normal boiling point of the liquid. The adjacent vapor pressure chart graphs the dependency of vapor pressure upon temperature for a variety of liquids[5] and also confirms that liquids with higher vapor pressures have lower normal boiling points.

For example, at any given temperature, methyl chloride (CH3Cl) has the highest vapor pressure of any of the liquids graphed in the chart. It also has the lowest normal boiling point (−26 °C), which is where its vapor pressure curve (the blue line) intersects the horizontal pressure line of one atmosphere (atm) of absolute vapor pressure.

In terms of intermolecular forces, the boiling point represents the temperature at which the liquid molecules possess enough kinetic energy to overcome the various intermolecular attractions binding the molecules to each other within the liquid. Therefore the boiling point is also an indicator of the strength of those attractive forces. The higher the intermolecular attractive forces are, the more difficult it is for molecules to escape from the liquid and hence the lower is the vapor pressure of the liquid. The lower the vapor pressure of the liquid, the higher the temperature must be to initiate boiling. Thus, the higher the intermolecular attractive forces are, the higher is the normal boiling point.[6][7]

Relative volatility

For more information, see: Relative volatility.

Relative volatility refers to a measure of the difference between the vapor pressure of the more volatile components of a liquid mixture and the vapor pressure of the less volatile components of the mixture. This measure is widely used in designing large industrial distillation processes.[4][5][8] In effect, it indicates the ease or difficulty of using distillation to separate the more volatile components from the less volatile components in a mixture. The use of relative volatility applies to multi-component liquid mixtures as well as to binary mixtures. By convention, relative volatility is typically denoted as α.

Volatile Organic Compound

For more information, see: Volatile organic compound.

The term Volatile organic compound (VOC) refers to organic chemical compounds having significant vapor pressures and which can have adverse effects on the environment and human health. VOCs are numerous, varied and include man-made (anthropogenic) as well as naturally occurring chemical compounds. The anthropogenic VOCs are regulated by various governmental environmental entities worldwide.

There is no universally accepted definition of VOCs. Some regulatory entities define them in terms of their vapor pressure at ordinary temperatures, or their normal boiling points, or how many carbon atoms they contain per molecule, and others define them in terms of their photochemical reactivity.

The U.S. Environmental Protection Agency currently defines them as any compound of carbon, excluding carbon monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium carbonate, which participates in atmospheric photochemical reactions (i.e., the reactions that produce photochemical smog). However, any such carbon compounds that have been determined to have a low photochemical reactivity, and specifically listed in the regulation, are exempted from regulation.[9]

Special definitions

There are a number of special definitions of the terms volatility and volatile commonly used in certain fields of study but which are still within the overall context of chemistry:

Wine making

The wine industry uses the term volatile acids to refer to organic acids that are water-soluble, have short carbon chains (six carbon atoms or less) and which occur in wine. For example: carbonic acid, acetic acid, formic acid, butyric acid and proprionic acid.

Cosmetics and flavorings

Certain volatile oils obtained from plants have distinctive, pleasant aromas which are used in cosmetics and food flavorings. These oils are commonly referred to as essential oils.

Coal

Coals contain a certain amount of volatile matter, defined as the portion of a coal sample which, when heated in the absence of air, is released as inorganic and organic gases.

Anesthetics

Inhalational anesthetics, commonly referred to as volatile anesthetics are organic liquids at room temperature which are easily vaporized. Some examples are:halothane, isoflurane and sevoflurane.

References

  1. Note: To vaporize means to become a vapor, the gaseous state of the substance.
  2. Gases and Vapor (University of Kentucky website)
  3. James G. Speight (2006). The Chemistry and Technology of Petroleum, 4th Edition. CRC Press. ISBN 0-8493-9067-2. 
  4. 4.0 4.1 Kister, Henry Z. (1992). Distillation Design, 1st Edition. McGraw-Hill. ISBN 0-07-034909-6. 
  5. 5.0 5.1 R.H. Perry and D.W. Green (Editors) (1997). Perry's Chemical Engineers' Handbook, 7th Edition. McGraw-Hill. ISBN 0-07-049842-5. 
  6. The Forces Between Molecules, Department of Chemistry, University of Florida.
  7. Intermolecular Forces, School of Chemistry, the University of New South Wales, Sydney, Australia.
  8. Seader, J. D., and Henley, Ernest J. (1998). Separation Process Principles. New York: Wiley. ISBN 0-471-58626-9. 
  9. U.S. Code of Federal Regulations: 40 CFR 51.100(s) - Definition - Volatile organic compounds (VOC)