Lucas sequence: Difference between revisions
imported>Karsten Meyer (New page: '''Lucas sequences''' are the particular generalisation of sequences like Fibonacci numbers, Lucas numbers, Pell numbers or [[Jacobsth...) |
mNo edit summary |
||
(16 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
'''Lucas | {{subpages}} | ||
In [[mathematics]], a '''Lucas sequence''' is a particular generalisation of sequences like the [[Fibonacci number|Fibonacci numbers]], [[Lucas number|Lucas numbers]], [[Pell number|Pell numbers]] or [[Jacobsthal number|Jacobsthal numbers]]. Lucas sequences have one common characteristic: they can be generated over [[quadratic equation|quadratic equations]] of the form: <math>\scriptstyle x^2-Px+Q=0\ </math> with <math>\scriptstyle P^2-4Q \ne 0</math>. | |||
There | There exist two kinds of Lucas sequences: | ||
* | *Sequences <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 0}</math> with <math>\scriptstyle U_n(P,Q)=\frac{a^n-b^n}{a-b}</math>, | ||
* | *Sequences <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 0}</math> with <math>\scriptstyle V_n(P,Q)=a^n+b^n\ </math>, | ||
<math>a\ </math> and <math>b\ </math> are the solutions <math>a = \frac{P + \sqrt{P^2 - 4Q}}{2}</math> and <math>b = \frac{P - \sqrt{P^2 - 4Q}}{2}</math> of the quadratic | |||
where <math>\scriptstyle a\ </math> and <math>b\ </math> are the solutions | |||
:<math>a = \frac{P + \sqrt{P^2 - 4Q}}{2}</math> | |||
and | |||
:<math>b = \frac{P - \sqrt{P^2 - 4Q}}{2}</math> | |||
of the quadratic equation <math>\scriptstyle x^2-Px+Q=0</math>. | |||
==Properties== | ==Properties== | ||
*The variables <math>a\ </math> and <math>b\ </math>, and the parameter <math>P\ </math> and <math>Q\ </math> are interdependent. | *The variables <math>\scriptstyle a\ </math> and <math>\scriptstyle b\ </math>, and the parameter <math>\scriptstyle P\ </math> and <math>\scriptstyle Q\ </math> are interdependent. In particular, <math>\scriptstyle P=a+b\ </math> and <math>\scriptstyle Q=a\cdot b.</math>. | ||
*For | *For every sequence <math>\scriptstyle U(P,Q) = (U_n(P,Q))_{n \ge 0}</math> it holds that <math>\scriptstyle U_0 = 0\ </math> and <math>U_1 = 1 </math>. | ||
*For | *For every sequence <math>\scriptstyle V(P,Q) = (V_n(P,Q))_{n \ge 0}</math> is holds that <math>\scriptstyle V_0 = 2\ </math> and <math>V_1 = P </math>. | ||
For every Lucas sequence | For every Lucas sequence the following are true: | ||
*<math>U_{2n} = U_n\cdot V_n\ </math> | *<math>\scriptstyle U_{2n} = U_n\cdot V_n\ </math> | ||
*<math>V_n = U_{n+1} - QU_{n-1}\ </math> | *<math>\scriptstyle V_n = U_{n+1} - QU_{n-1}\ </math> | ||
*<math>V_{2n} = V_n^2 - 2Q^n\ </math> | *<math>\scriptstyle V_{2n} = V_n^2 - 2Q^n\ </math> | ||
*<math>\operatorname{ | *<math>\scriptstyle \operatorname{gcd}(U_m,U_n)=U_{\operatorname{gcd}(m,n)}</math> | ||
*<math>m\mid n\implies U_m\mid U_n</math> | *<math>\scriptstyle m\mid n\implies U_m\mid U_n</math> for all <math>\scriptstyle U_m\ne 1</math> | ||
<!-- Taken from engish Wikipedia - Start --> | |||
==Recurrence relation== | |||
The Lucas sequences ''U''(''P'',''Q'') and ''V''(''P'',''Q'') are defined by the [[recurrence relation]]s | |||
:<math>U_0(P,Q)=0 \,</math> | |||
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.--> | |||
:<math>U_1(P,Q)=1 \,</math> | |||
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.--> | |||
:<math>U_n(P,Q)=PU_{n-1}(P,Q)-QU_{n-2}(P,Q) \mbox{ for }n>1 \,</math> | |||
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.--> | |||
and | |||
:<math>V_0(P,Q)=2 \,</math> | |||
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.--> | |||
:<math>V_1(P,Q)=P \,</math> | |||
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.--> | |||
:<math>V_n(P,Q)=PV_{n-1}(P,Q)-QV_{n-2}(P,Q) \mbox{ for }n>1 \,</math> | |||
<!-- The \, is to keep the formula rendered as PNG instead of HTML. Please don't remove it.--> | |||
<!-- Taken from english Wikipedia - End --> | |||
==Fibonacci numbers and Lucas numbers== | ==Fibonacci numbers and Lucas numbers== | ||
The | The two best known Lucas sequences are the Fibonacci numbers <math>\scriptstyle U(1,-1)\ </math> and the Lucas numbers <math>\scriptstyle V(1,-1)\ </math> with <math>\scriptstyle a = \frac{1+\sqrt{5}}{2}</math> and <math>\scriptstyle b = \frac{1-\sqrt{5}}{2}</math>. | ||
==Lucas sequences and the | ==Lucas sequences and the prime numbers== | ||
If the natural number <math>\scriptstyle p\ </math> is a [[prime number]] then it holds that | |||
*<math>p\ </math> divides <math>U_p(P,Q)-\left(\frac Dp\right)</math> | *<math>\scriptstyle p\ </math> divides <math>\scriptstyle U_p(P,Q)-\left(\frac Dp\right)</math> | ||
*<math>p\ </math> divides <math>V_p(P,Q)-\ | *<math>\scriptstyle p\ </math> divides <math>\scriptstyle V_p(P,Q)-P\ </math> | ||
Fermat's | [[Fermat's Little Theorem]] can then be seen as a special case of <math>\scriptstyle p\ </math> divides <math>\scriptstyle (V_n(P,Q) - P)\ </math> because <math>\scriptstyle a^p \equiv a \pmod p</math> is equivalent to <math>\scriptstyle V_p(a+1,a) \equiv V_1(a+1,a) \pmod p</math>. | ||
The converse | The converse pair of statements that if <math>\scriptstyle n\ </math> divides <math>\scriptstyle U_n(P,Q)-\left(\frac Dn\right)</math> then is <math>\scriptstyle n\ </math> a prime number and if <math>m\ </math> divides <math>\scriptstyle V_m(P,Q)-P\ </math> then is <math>m\ </math> a prime number) are individually false and lead to [[Fibonacci pseudoprime|Fibonacci pseudoprimes]] and [[Lucas pseudoprime|Lucas pseudoprimes]], respectively. | ||
== Further reading == | == Further reading == | ||
*''The | *P. Ribenboim, ''The New Book of Prime Number Records'' (3 ed.), Springer, 1996, ISBN 0-387-94457-5. | ||
*''My Numbers, | *P. Ribenboim, ''My Numbers, My Friends'', Springer, 2000, ISBN 0-387-98911-0.[[Category:Suggestion Bot Tag]] | ||
[[Category: |
Latest revision as of 16:00, 13 September 2024
In mathematics, a Lucas sequence is a particular generalisation of sequences like the Fibonacci numbers, Lucas numbers, Pell numbers or Jacobsthal numbers. Lucas sequences have one common characteristic: they can be generated over quadratic equations of the form: with .
There exist two kinds of Lucas sequences:
- Sequences with ,
- Sequences with ,
where and are the solutions
and
of the quadratic equation .
Properties
- The variables and , and the parameter and are interdependent. In particular, and .
- For every sequence it holds that and .
- For every sequence is holds that and .
For every Lucas sequence the following are true:
- for all
Recurrence relation
The Lucas sequences U(P,Q) and V(P,Q) are defined by the recurrence relations
and
Fibonacci numbers and Lucas numbers
The two best known Lucas sequences are the Fibonacci numbers and the Lucas numbers with and .
Lucas sequences and the prime numbers
If the natural number is a prime number then it holds that
- divides
- divides
Fermat's Little Theorem can then be seen as a special case of divides because is equivalent to .
The converse pair of statements that if divides then is a prime number and if divides then is a prime number) are individually false and lead to Fibonacci pseudoprimes and Lucas pseudoprimes, respectively.
Further reading
- P. Ribenboim, The New Book of Prime Number Records (3 ed.), Springer, 1996, ISBN 0-387-94457-5.
- P. Ribenboim, My Numbers, My Friends, Springer, 2000, ISBN 0-387-98911-0.