Confidence interval: Difference between revisions
Jump to navigation
Jump to search
imported>Jitse Niesen (move external links to subpage) |
mNo edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 18: | Line 18: | ||
:<math>\mbox{Z} = 3.29\,(\mbox{if}\, \alpha = 0.001 \,\mbox{for}\,99.9%\,\mbox{confidence intervals})\,\!</math> | :<math>\mbox{Z} = 3.29\,(\mbox{if}\, \alpha = 0.001 \,\mbox{for}\,99.9%\,\mbox{confidence intervals})\,\!</math> | ||
:<math>\mbox{SE} = \mbox{standard error} = \frac{\ | :<math>\mbox{SE} = \mbox{standard error} = \frac{\sigma}{\sqrt{n}}</math> | ||
:<math>\sigma = \mbox{standard deviation}\,\!</math> | |||
For small samples, calculations should be made using the binomial distribution or the Poisson distribution. | For small samples, calculations should be made using the binomial distribution or the Poisson distribution. | ||
==References== | ==References== | ||
<references/> | <references/>[[Category:Suggestion Bot Tag]] |
Latest revision as of 06:00, 1 August 2024
The Confidence interval (CI) is a "range of values for a variable of interest, e.g., a rate, constructed so that this range has a specified probability of including the true value of the variable."[1]
In large samples, calculations for the CI for rates and proportions may be based on the normal distribution.[2][3]
The equation using the normal distribution is:[4]
Where
For small samples, calculations should be made using the binomial distribution or the Poisson distribution.
References
- ↑ Anonymous (2024), Confidence interval (English). Medical Subject Headings. U.S. National Library of Medicine.
- ↑ Fleiss, Joseph L. (1973). Statistical methods for rates and proportions. New York: Wiley, 13. ISBN 0-471-26370-2.
- ↑ Cochran, William Cox; Snedecor, George W. (1980). Statistical methods. Ames: Iowa State University Press, 118. ISBN 0-8138-1560-6.
- ↑ Gardner MJ, Altman DG (March 1986). "Confidence intervals rather than P values: estimation rather than hypothesis testing". Br Med J (Clin Res Ed) 292 (6522): 746–50. PMID 3082422. [e]