Naval guns and gunnery: Difference between revisions
imported>Chunbum Park |
Pat Palmer (talk | contribs) m (Text replacement - "guided missile" to "guided missile") |
||
(58 intermediate revisions by 9 users not shown) | |||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
{{TOC|right}} | |||
'''Naval guns''' are artillery weapons on ships; although they are descended from land-based weapons, they quickly became specialized weapons, because of the particular technical issues involved in their use on vessels. With the rise of naval artillery, firing projectiles at opposing vessels mostly replaced the previous methods of fighting at sea, including ramming and boarding. For many current applications, they have been replaced by guided missiles; this is a blurry line as [[guided shell]]s increasingly are used in modern naval guns. | |||
Naval guns are now used primarily as defensive measures against small boat or missile attacks, and for shore bombardment; the bombardment role is the primary area of active research and development (e.g., [[5"-62 caliber gun]], although some [[autocannon]] are under development for point defense (e.g., Oerlikon Skyshield) and against small boats (e.g., [[M242 Bushmaster|25mm Bushmaster]]), especially potential suicide attackers. | |||
They first appeared in [[Korea]] in the 1370s<ref name="KEIS">[http://seis.scienceall.com/book_file/ke9/ke009-007.htm Science Contents Promotion Center]</ref>, and they came into general use in the West in the 15th century, and in the East by the mid-16th century. | |||
The years between 1500 and 1941 comprised an era in naval history in which all the major fleets were built around platforms that could shoot bigger and more accurate guns. Major advancements came with the operational use of armored warships at the [[Battle of Hampton Roads]] (1862) and the introduction of the radical new design of the first "all-big gun" [[battleship]], [[HMS Dreadnought (1905)]]. The supremacy of gun-armed battleships yielded to the [[aircraft carrier]] and land-based aviation, with the role of aircraft the [[Battle of Taranto]], in crippling the German ''[[Bismarck]]'', the [[Pearl Harbor (World War II)|attack on Pearl Harbor]], and the sinking of ''[[HMS Repulse]]'' and ''[[HMS Prince of Wales]]'' in 1941. The last battleship-versus-battleship engagement was the [[Battle of Surigao Strait]] in 1945, although torpedoes played a major part. The last combat involving major ships and settled only by gunfire, were the [[Battle of North Cape]] and [[Battle of the Komandorski Islands]] in 1943. | |||
[[Anti-aircraft artillery|anti-aircraft guns]] were important defenses in the Second World War, but, the advent of [[anti-shipping missile]]s, principally in the form of the Japanese [[kamikaze]] but also the German [[Fritz-X]], signaled a trend to [[surface-to-air missile]]s. | |||
==Fundamental problems of naval gunnery== | |||
The most basic problem faced by naval guns, as opposed to shore artillery, is that the guns have to be aimed from moving platforms at other moving platforms, with wave motion adding the third dimension. | |||
Next, by basic physics, any [[cannon]] being fired will exert a backwards force, [[recoil]]. On shore, part of the shock of recoil could be taken up by the ground, but, with [[warship (sail)|sailing warships]], that force was transmitted to the wooden structure, of limited strength. | |||
Until mechanical means of managing recoil were invented, a ship's cannon, of any appreciable size, would jerk backward on its wheeled mounting. At best, it would have to be rolled back to aim the next shot, or it could crush unwary crewmen behind it. At worst, the force would break the carriage and create the literal "loose cannon," with a ton or more of metal smashing that which came into its path. | |||
==First guns in East Asia: 14th-16th centuries== | ==First guns in East Asia: 14th-16th centuries== | ||
The world's first naval guns | The world's first naval guns were used by the Koreans to counter Japanese piracy during the [[Goryeo Dynasty]].<ref name="KIST">[http://www.hani.co.kr/section-010100020/2004/11/010100020200411241519001.html 세계 최초의 함포탑재 전함을 개발한 최무선], KIST</ref> A rocket was fired experimentally from a ship for the first time in 1373,<ref name="KEIS"/> but it was not until 1377 when new ships were built with designs to deploy the artillery.<ref name="daum">[http://enc.daum.net/dic100/viewContents.do?query1=b25h2409a Encyclopedia Britannica on Daum.net] (Korean)</ref> Much credit for this development is given to a civil servant named Choe Mu-seon, who acquired the manufacturing techniques for gunpowder in 1375 and eliminated Korea's reliance on the imported gunpowder and gunpowder weapons from China. The naval gun's superiority to the traditional means of naval engagement was greatly demonstrated in the Battle of Jinpo in 1380, in which 40 Korean navy ships engaged a Japanese pirate fleet at the mouth of the [[Geum River]] and sank all 500 ships with cannons and rockets.<ref name="KIST"/><ref name="SNU">[http://seer.snu.ac.kr/trip/anc-4.html Seoul National University page]</ref> | ||
Although the gunpowder and the rocket originated in China, the Chinese never applied them to naval warfare until the later years of the [[Ming Dynasty]].<ref name="turn16">Turnbull, 2002. pp. 16</ref> | |||
==First guns in Europe: 15th century== | ==First guns in Europe: 15th century== | ||
In Europe, the first authenticated mention of a naval gun came in the early 15th century, shortly after the appearance of land-based artillery. Italian and English warships carried guns by 1440. They were about 4 feet long with 4-inch caliber.<ref> Kelly R. DeVries, "A 1445 Reference to Shipboard Artillery," ''Technology and Culture'', Vol. 31, No. 4 (Oct., 1990), pp. 818-829 [http://links.jstor.org/sici?sici=0040-165X%28199010%2931%3A4%3C818%3AA1RTSA%3E2.0.CO%3B2-8 in JSTOR]</ref> The early guns were simple tubes built up from long bars of iron held together with iron bands. These guns were breechloaders with a separate [[gunpowder]] chamber, or servidor, which was wedged into the breech after the stone or iron cannon ball, had been inserted. Muzzle-loading cast-bronze guns came into use soon after the wrought-iron breechloaders. Cast-iron guns came into being soon after cast-bronze guns. Despite distinct advantages of cast iron, its heaviness, the rust factor and the great danger to crewmen when it burst meant that for centuries heavy cast-iron and lighter cast-bronze guns (which split rather than burst) were both used. | In Europe, the first authenticated mention of a naval gun came in the early 15th century, shortly after the appearance of land-based artillery. Italian and English warships carried guns by 1440. They were about 4 feet long with 4-inch caliber.<ref> Kelly R. DeVries, "A 1445 Reference to Shipboard Artillery," ''Technology and Culture'', Vol. 31, No. 4 (Oct., 1990), pp. 818-829 [http://links.jstor.org/sici?sici=0040-165X%28199010%2931%3A4%3C818%3AA1RTSA%3E2.0.CO%3B2-8 in JSTOR]</ref> | ||
The early guns were simple tubes built up from long bars of iron held together with iron bands. These guns were breechloaders with a separate [[gunpowder]] chamber, or servidor, which was wedged into the breech after the stone or iron cannon ball, had been inserted. Muzzle-loading cast-bronze guns came into use soon after the wrought-iron breechloaders. Cast-iron guns came into being soon after cast-bronze guns. Despite distinct advantages of cast iron, its heaviness, the rust factor and the great danger to crewmen when it burst meant that for centuries heavy cast-iron and lighter cast-bronze guns (which split rather than burst) were both used. | |||
In the mid-16th century, cast-iron, cast-bronze, and banded wrought-iron guns were all used aboard ship, as is evidenced by the salvage of the ''Mary Rose'' the flagship of English King [[Henry VIII]] (sunk in 1545 and salvaged in 1836) which contained guns of all three types. Arrows and stones, used in early guns, gave way to cast-iron balls.<ref>David Childs, "Shock and Oar: Mary Rose and the Fear French Galleys," ''History Today'' 57#4 (April 2007) pp 41+. [http://www.questia.com/read/5021460836 online edition]</ref> | In the mid-16th century, cast-iron, cast-bronze, and banded wrought-iron guns were all used aboard ship, as is evidenced by the salvage of the ''Mary Rose'' the flagship of English King [[Henry VIII]] (sunk in 1545 and salvaged in 1836) which contained guns of all three types. Arrows and stones, used in early guns, gave way to cast-iron balls.<ref>David Childs, "Shock and Oar: Mary Rose and the Fear French Galleys," ''History Today'' 57#4 (April 2007) pp 41+. [http://www.questia.com/read/5021460836 online edition]</ref> | ||
Line 26: | Line 43: | ||
Iron sheets hung over the sides were used in 16th century Venice and Korea to protect against enemy fire; it gave a "tortoise" look. In the 1790s the Americans protected the frigate Constitution (Old Ironsides) with 22 inches of oak wood at the waterline, and 19 inches above the gun deck. | Iron sheets hung over the sides were used in 16th century Venice and Korea to protect against enemy fire; it gave a "tortoise" look. In the 1790s the Americans protected the frigate Constitution (Old Ironsides) with 22 inches of oak wood at the waterline, and 19 inches above the gun deck. | ||
==Gunnery science== | ==Gunnery science== | ||
Gunnery was a mysterious art because every element was variable. Shot was never uniform, because of careless manufacture and rusting in storage. Gunpowder varied even more in terms of strength and burning rate; the bore of the guns varied in size. Even the mathematical models proposed for predicting the trajectory of projectiles through the air varied among mathematicians. A British scientist, Benjamin Robins (1707–1751), in the 1740s, put forward basic theories and supporting experimental data which put ballistics into the framework of Newtonian mechanics and formed the basis of the science of ballistics. For example, by applying Newton's second law to velocity measurements at varying ranges, Robins measured the air-resistance that slowed balls in flight. Robins proposed that the bore of the cannon be enlarged, that they be equipped with snug-fitting balls, and that they be fired with decreased charges of powder. This, he argued would increase destructive power, since the larger ball with a relatively low velocity would do more damage than would a smaller one. He further urged that careful attention be given to designing new guns to eliminate unnecessary weight.<ref> Brett D. Steele, "Robins, Benjamin (1707–1751)", ''Oxford Dictionary of National Biography'', (2004), online from [[OUP]]</ref> | Gunnery was a mysterious art because every element was variable. Shot was never uniform, because of careless manufacture and rusting in storage. Gunpowder varied even more in terms of strength and burning rate; the bore of the guns varied in size. Even the mathematical models proposed for predicting the trajectory of projectiles through the air varied among mathematicians. A British scientist, Benjamin Robins (1707–1751), in the 1740s, put forward basic theories and supporting experimental data which put ballistics into the framework of Newtonian mechanics and formed the basis of the science of ballistics. For example, by applying Newton's second law to velocity measurements at varying ranges, Robins measured the air-resistance that slowed balls in flight. Robins proposed that the bore of the cannon be enlarged, that they be equipped with snug-fitting balls, and that they be fired with decreased charges of powder. This, he argued would increase destructive power, since the larger ball with a relatively low velocity would do more damage than would a smaller one. He further urged that careful attention be given to designing new guns to eliminate unnecessary weight.<ref> Brett D. Steele, "Robins, Benjamin (1707–1751)", ''Oxford Dictionary of National Biography'', (2004), online from [[OUP]]</ref> | ||
In ''A Proposal for Increasing the Strength of the British Navy'' (1747) Robins proposed a new naval gun design based on his models, and in 1779, the carronade was invented to incorporate Robins' ideas. These short-barreled, light-weight, large-bore guns used a small powder charge and the same projectile as did the long guns. As Continental scientists like [[Leonhard Euler]] developed Robins' ideas, Navies across Europe hurried to adopt Robins' proposals.<ref> Brett D. Steele, "Muskets and Pendulums: Benjamin Robins, Leonhard Euler, and the Ballistics Revolution," ''Technology and Culture'', Vol. 35, No. 2 (Apr., 1994), pp. 348-382 [http://links.jstor.org/sici?sici=0040-165X(199404)35%3A2%3C348%3AMAPBRL%3E2.0.CO%3B2-1 in JSTOR] </ref> The British put carronades on existing ships and armed many of the smaller warships, such as frigates, sloops, and brigs, entirely with carronades. Similar guns were put into service by the Dutch, French, Spanish, and American navies. The carronade's short range eventually led to loss of interest in it as a naval weapon. In two actions during the [[War of 1812]], this shortcoming was an important factor in determining the victor. In the [[Battle of Lake Erie]], American forces fought with long guns from beyond the range of British ships, and the English commodore reported, "We remained in this mortifying situation five hours, having only six guns in all the squadron that would reach the enemy, not a carronade being fired."<ref> Quoted in [http://books.google.com/books?id=bxkbAAAAIAAJ&pg=PA294&dq=%22We+remained+in+this+mortifying+situation+five+hours%22&lr=&num=30&as_brr=0 Theodore Roosevelt, ''The Naval War of 1812'' (1882) page 294] </ref> In another action, the British ships Phoebe and Cherub, armed with long guns, captured the American frigate Essex, which was equipped almost entirely with carronades. Despite its shortcomings, the carronade demonstrated the importance of quick-firing weapons and the need to use projectiles which fitted snugly into the bore of the gun.<ref>Frederick Leslie Robertson, ''The Evolution of Naval Armament'' (1921) pp 112-39 </ref> | In ''A Proposal for Increasing the Strength of the British Navy'' (1747) Robins proposed a new naval gun design based on his models, and in 1779, the [[carronade]] was invented to incorporate Robins' ideas. These short-barreled, light-weight, large-bore guns used a small powder charge and the same projectile as did the long guns. As Continental scientists like [[Leonhard Euler]] developed Robins' ideas, Navies across Europe hurried to adopt Robins' proposals.<ref> Brett D. Steele, "Muskets and Pendulums: Benjamin Robins, Leonhard Euler, and the Ballistics Revolution," ''Technology and Culture'', Vol. 35, No. 2 (Apr., 1994), pp. 348-382 [http://links.jstor.org/sici?sici=0040-165X(199404)35%3A2%3C348%3AMAPBRL%3E2.0.CO%3B2-1 in JSTOR] </ref> The British put carronades on existing ships and armed many of the smaller warships, such as frigates, sloops, and brigs, entirely with carronades. Similar guns were put into service by the Dutch, French, Spanish, and American navies. The carronade's short range eventually led to loss of interest in it as a naval weapon. In two actions during the [[War of 1812]], this shortcoming was an important factor in determining the victor. In the [[Battle of Lake Erie]], American forces fought with long guns from beyond the range of British ships, and the English commodore reported, "We remained in this mortifying situation five hours, having only six guns in all the squadron that would reach the enemy, not a carronade being fired."<ref> Quoted in [http://books.google.com/books?id=bxkbAAAAIAAJ&pg=PA294&dq=%22We+remained+in+this+mortifying+situation+five+hours%22&lr=&num=30&as_brr=0 Theodore Roosevelt, ''The Naval War of 1812'' (1882) page 294] </ref> In another action, the British ships Phoebe and Cherub, armed with long guns, captured the American frigate Essex, which was equipped almost entirely with carronades. Despite its shortcomings, the carronade demonstrated the importance of quick-firing weapons and the need to use projectiles which fitted snugly into the bore of the gun.<ref>Frederick Leslie Robertson, ''The Evolution of Naval Armament'' (1921) pp 112-39 </ref> | ||
===Fire ships and mortars=== | ===Fire ships and mortars=== | ||
Naval gunnery focused on the broadside ship and the long guns that served as decisive elements in combat. For other naval purposes, however, other gunnery devices were used. The "fire ship" which was loosed into enemy ship concentrations was a weapon of antiquity. With the development of gunpowder, powder ships were used in preference to fire ships. For example, in a 1693 attack on the French port of Saint-Malo, the British Commodore Benbow loaded a galliot with 100 barrels of powder and 340 chests containing cannon balls, iron chains, large pieces of metal, and other destructive missiles. This ship was cast adrift and grounded on a rock in the harbor where it exploded, blowing down part of the town wall and severely damaging the houses. | Naval gunnery focused on the broadside ship and the long guns that served as decisive elements in combat. For other naval purposes, however, other gunnery devices were used. The "fire ship" which was loosed into enemy ship concentrations was a weapon of antiquity. With the development of gunpowder, powder ships were used in preference to fire ships. For example, in a 1693 attack on the French port of Saint-Malo, the British Commodore Benbow loaded a galliot with 100 barrels of powder and 340 chests containing cannon balls, iron chains, large pieces of metal, and other destructive missiles. This ship was cast adrift and grounded on a rock in the harbor where it exploded, blowing down part of the town wall and severely damaging the houses. | ||
Line 63: | Line 60: | ||
===Projectiles === | ===Projectiles === | ||
The projectiles which were used through the early 19th century varied depending upon the target. Solid cast-iron balls were used in attacking the hulls of other ships. '''Chain shot''', consisting of two shot secured to each other with a length of chain, and bar shot, consisting of two solid hemispheres secured by a bar, were effective at short range against sails and rigging but were very inaccurate in their flight. Canister and '''grape shot''' were used against the crews. Canister was a tin cylinder fitting the bore of the gun and packed with musket balls. Grape shot | The projectiles which were used through the early 19th century varied depending upon the target. Solid cast-iron balls were used in attacking the hulls of other ships. '''Chain shot''', consisting of two shot secured to each other with a length of chain, and bar shot, consisting of two solid hemispheres secured by a bar, were effective at short range against sails and rigging but were very inaccurate in their flight. | ||
Canister and '''grape shot''' were used against the crews. Canister was a tin cylinder fitting the bore of the gun and packed with musket balls. Grape shot consisted larger balls held in a cylindrical frame. Both types broke up on leaving the muzzle, with the clustered balls dispersing. These were especially effective when fired from carronades in short-range engagements, such as before sending fighting men to board the enemy vessel. | |||
===Shrapnel=== | ===Shrapnel=== | ||
Grape and canister were replaced after Henry Shrapnel in 1784 devised a thin-cased shell containing musket balls and a powder bursting charge. A burning fuse ignited the powder while the shell was in flight and liberated showers of small missiles.<ref>In modern usage, the term "shrapnel" is sometimes applied to the flying pieces of metal of a shell fragmented by the exploding charge.</ref> Hot shot also came into use against wooden hulls. It was fired with just sufficient velocity to splinter the wooden sides and render them favorable for burning when ignited by the red-hot cannonball. | Grape and canister were replaced after Henry Shrapnel in 1784 devised a thin-cased shell containing musket balls and a powder bursting charge. A burning fuse ignited the powder while the shell was in flight and liberated showers of small missiles.<ref>In modern usage, the term "shrapnel" is sometimes applied to the flying pieces of metal of a shell fragmented by the exploding charge.</ref> Hot shot also came into use against wooden hulls. It was fired with just sufficient velocity to splinter the wooden sides and render them favorable for burning when ignited by the red-hot cannonball. | ||
==18th century gunnery== | |||
The techniques of gunnery remained fairly static before the 1870s. Constant drill speeded the maximum rate of fire from one round every five minutes (1660s) to one round a minute (1760s). Rate of fire and weight of the shells in a broadside was more important than accuracy when the enemy was close. The ship of the line, or broadside ship, with heavy guns mounted on the lower deck just above the waterline and with lighter guns on higher decks, remained the dominant factor in naval warfare despite many small improvements.<ref>Bernard Ireland, ''Naval Warfare in the Age of Sail'' (2000) [http://www.amazon.com/gp/reader/0393049833/ref=sib_books_pg?ie=UTF8&keywords=naval%20gunnery&p=S01I&checkSum=8covysLzTFfgml8KBKgRfqYiFwWXki%252FGijPVPqAfj%252F8%253D pp 47-50] </ref> | |||
==The 19th century gunnery revolution== | ==The 19th century gunnery revolution== | ||
The 19th century saw striking advances in technology. The steam engine was adopted for marine propulsion after 1820; ships were built of iron after 1850; guns increased in size and power, and steel armor was added to battleships. High explosives were invented and better powder. These innovations came about almost simultaneously and affected each other. Steam power was used to manipulate heavy guns. Iron hulls allowed larger ships than had been possible with wood, and larger guns could consequently be carried. Advances in metallurgical led to stronger hulls, stronger guns, and armor plate to protect against the enemy's shells. As the armor grew thicker and stronger the guns had to be more powerful, and the entire warship became much larger and more stable. | The 19th century saw striking advances in technology. The steam engine was adopted for marine propulsion after 1820; ships were built of iron after 1850; guns increased in size and power, and steel armor was added to battleships. High explosives were invented and better powder. These innovations came about almost simultaneously and affected each other. Steam power was used to manipulate heavy guns. Iron hulls allowed larger ships than had been possible with wood, and larger guns could consequently be carried. Advances in metallurgical led to stronger hulls, stronger guns, and armor plate to protect against the enemy's shells. As the armor grew thicker and stronger the guns had to be more powerful, and the entire warship became much larger and more stable. | ||
Line 73: | Line 74: | ||
Many steps were involved in this process and basic advances were sometimes abandoned because they were beyond the technology of the day. For example, the first naval vessel to be fitted with screw propellers, the U.S. Navy's ''Princeton'', was also fitted with two 12-inch, wrought-iron guns. These guns proved to be beyond the metallurgy of the period and during a public demonstration in 1844 one of them burst, killing five people including high officials.<ref> Lee M. Pearson, "The "Princeton" and the "Peacemaker": A Study in Nineteenth-Century Naval Research and Development Procedures," ''Technology and Culture'' Vol. 7, No. 2 (Spring, 1966), pp. 163-183 [http://links.jstor.org/sici?sici=0040-165X%28196621%297%3A2%3C163%3AT%22AT%22A%3E2.0.CO%3B2-3 in JSTOR]; Spencer C. Tucker, "U.S. Navy Steam Sloop Princeton." ''American Neptune'' 1989 49(2): 96-113. Issn: 0003-0155 </ref> In 1854 a British engineer, [[William Armstrong]], perfected techniques for making guns of wrought iron. Almost simultaneously, [[Alfred Krupp]] of Germany began making guns from cast steel ingots. Their fabrication techniques made possible the high-power guns which came to characterize naval ordnance. Krupp and Armstrong each designed breech-loading mechanisms and fitted their guns with both rifled and smooth-bore barrels. Breechloaders achieved definite superiority over muzzle-loaders. The greater range, velocity, and accuracy which were the advantages of rifled guns were offset by the higher stresses imposed on the barrel and by other design problems. Rifled small arms had been in use for hundreds of years, but their advantages of greater accuracy and longer effective range were largely offset by the disadvantage of slow rate of fire until, in the 1850s, elongated bullets permitting rapid loading. To provide strength to withstand the increased working pressure of large rifled guns, the French in 1859 introduced a technique of reinforcing with hoops of puddled steel. | Many steps were involved in this process and basic advances were sometimes abandoned because they were beyond the technology of the day. For example, the first naval vessel to be fitted with screw propellers, the U.S. Navy's ''Princeton'', was also fitted with two 12-inch, wrought-iron guns. These guns proved to be beyond the metallurgy of the period and during a public demonstration in 1844 one of them burst, killing five people including high officials.<ref> Lee M. Pearson, "The "Princeton" and the "Peacemaker": A Study in Nineteenth-Century Naval Research and Development Procedures," ''Technology and Culture'' Vol. 7, No. 2 (Spring, 1966), pp. 163-183 [http://links.jstor.org/sici?sici=0040-165X%28196621%297%3A2%3C163%3AT%22AT%22A%3E2.0.CO%3B2-3 in JSTOR]; Spencer C. Tucker, "U.S. Navy Steam Sloop Princeton." ''American Neptune'' 1989 49(2): 96-113. Issn: 0003-0155 </ref> In 1854 a British engineer, [[William Armstrong]], perfected techniques for making guns of wrought iron. Almost simultaneously, [[Alfred Krupp]] of Germany began making guns from cast steel ingots. Their fabrication techniques made possible the high-power guns which came to characterize naval ordnance. Krupp and Armstrong each designed breech-loading mechanisms and fitted their guns with both rifled and smooth-bore barrels. Breechloaders achieved definite superiority over muzzle-loaders. The greater range, velocity, and accuracy which were the advantages of rifled guns were offset by the higher stresses imposed on the barrel and by other design problems. Rifled small arms had been in use for hundreds of years, but their advantages of greater accuracy and longer effective range were largely offset by the disadvantage of slow rate of fire until, in the 1850s, elongated bullets permitting rapid loading. To provide strength to withstand the increased working pressure of large rifled guns, the French in 1859 introduced a technique of reinforcing with hoops of puddled steel. | ||
During the [[ | During the [[American Civil War|American Civil War]], Lt. John M. Brooke of the Confederate Navy built rifled cast-iron guns hooped with wrought-iron rings. The American effort, however, went into improving cast-iron smooth-bore guns. [[John A. Dahlgren]] of the U.S. Navy greatly improved the shape of long guns. He measured the exact amount of strain and its location within the gun and proportioned the parts of the gun with reference to this strain. He abandoned both the ornamentation and the traditional shape for heavy guns. T. J. Rodman invented a way to cast guns hollow and cooling the inner surfaces while the metal hardened. This redistributed the strains within the gun and overcame the elastic peculiarities of cast iron, making it possible to cast guns with a bore of up to twenty inches and a gross weight of nearly 60 tons, but with a life comparable to that of smaller guns. | ||
===Turrets=== | ===Turrets=== | ||
The old wooden naval gun carriages mounted on wheels and using a heavy rope breeching to absorb recoil were replaced by iron carriages fitted on an inclined slide. Various devices, such as the friction of interlaced iron plates, were used for absorbing recoil. The gun carriages were fitted with wheels running on concentric tracks, thereby simplifying the training of the guns. The pivot gun, achieving its best development during the War of 1812, offered a 70 degree arc of fire but still required the ship to be turned for fore and aft targets. | The old wooden naval gun carriages mounted on wheels and using a heavy rope breeching to absorb recoil were replaced by iron carriages fitted on an inclined slide. Various devices, such as the friction of interlaced iron plates, were used for absorbing recoil. The gun carriages were fitted with wheels running on concentric tracks, thereby simplifying the training of the guns. The pivot gun, achieving its best development during the War of 1812, offered a 70 degree arc of fire but still required the ship to be turned for fore and aft targets. | ||
American [[John Ericsson]] and Royal Navy Captain Cowper Phipps Coles developed the first practical revolving turrets. Ericsson's 1854 design was used on the ''Monitor'' (1862) and the coastal ships of that type during the Civil War. Coles designed a turret for a raft in 1855 and took out a patent for an improved design in 1859. A Danish warship built in Britain in 1863 had two revolving turrets based on Coles's design. The Royal Navy began using turreted guns in 1864. Seagoing Royal Navy turret ships of the 1860s had masts and rigging, a protective forecastle, and a poop, which limited the arc of fire to 120 to 132 degrees. The weight of the hull armor, turrets, and masts made these ships dangerously top heavy. The steam-powered ''Devastation'', built in Britain in 1873, was the first ocean-going turreted warship and the first modern battleship.<ref> Stanley Sandler, "The Emergence of the Modern Capital Ship," ''Technology and Culture'' Vol. 11, No. 4 (Oct., 1970), pp. 576-595 [http://links.jstor.org/sici?sici=0040-165X%28197010%2911%3A4%3C576%3ATEOTMC%3E2.0.CO%3B2-M in JSTOR]</ref> The Coles turret system became the standard until the 1890s. Steam powered turntables, however, offered far from perfect control of the turning motion, and in the mid-1870s, [[William Armstrong]] perfected the application of hydraulic power to gun turrets. As developed by the Armstrong Company of Britain and first used in the ''Dreadnought | American [[John Ericsson]] and Royal Navy Captain Cowper Phipps Coles developed the first practical revolving turrets. Ericsson's 1854 design was used on the ''Monitor'' (1862) and the coastal ships of that type during the Civil War. Coles designed a turret for a raft in 1855 and took out a patent for an improved design in 1859. A Danish warship built in Britain in 1863 had two revolving turrets based on Coles's design. The Royal Navy began using turreted guns in 1864. Seagoing Royal Navy turret ships of the 1860s had masts and rigging, a protective forecastle, and a poop on the stern, which together limited the arc of fire to 120 to 132 degrees. The weight of the hull armor, turrets, and masts made these ships dangerously top heavy. The steam-powered ''Devastation'', built in Britain in 1873, was the first ocean-going turreted warship and the first modern battleship.<ref> Stanley Sandler, "The Emergence of the Modern Capital Ship," ''Technology and Culture'' Vol. 11, No. 4 (Oct., 1970), pp. 576-595 [http://links.jstor.org/sici?sici=0040-165X%28197010%2911%3A4%3C576%3ATEOTMC%3E2.0.CO%3B2-M in JSTOR]</ref> The Coles turret system became the standard until the 1890s. Steam powered turntables, however, offered far from perfect control of the turning motion, and in the mid-1870s, [[William Armstrong]] perfected the application of hydraulic power to gun turrets. As developed by the Armstrong Company of Britain and first used in the ''[[HMS Dreadnought (1875)]]'', hydraulic power was applied to all the principal operations of working the gun, such as checking the recoil and moving the gun in or out along the slides and ramming home the powder and charge. Thus, the basic problems of designing carriages for heavy naval guns were solved. The U.S. Navy adopted electric drives, which were eventually superseded by variable-speed gears. Power drives also operated the smaller secondary batteries which served tactically for close-range attacks. The battleship turret, developed in the 1860s, was a mainstay of naval armament from the 1870s until the 1940s.<ref>Arnold A. Putnam, "The Introduction of the Revolving Turret." ''American Neptune'' 1996 56(2): 117-129. Issn: 0003-0155 </ref> | ||
===Naval race=== | ===Naval race=== | ||
Paixhans and his followers immediately realized the need to protect their ships from the penetrating power of rifled shot. Iron plates 7 inches thick proved vulnerable to 8-inch shells. As a rule of thumb, another inch of armor was needed for every inch of shell diameter. Armor was very heavy, so the ship had to be enlarged to carry big guns and thick armor. The French | Paixhans and his followers immediately realized the need to protect their ships from the penetrating power of rifled shot. Iron plates 7 inches thick proved vulnerable to 8-inch shells. As a rule of thumb, another inch of armor was needed for every inch of shell diameter. Armor was very heavy, so the ship had to be enlarged to carry big guns and thick armor. The French breakthrough came with the ''Gloire'' (1859), built wood covered by 4.5 inch iron plates from the main deck to below the waterline; the 5600 ton battleship carried 30 6.5 inch guns and boasted a top speed of 14 knots. It was a major breakthrough and but Britain leapfrogged it in 1860 with the ''Warrior'' (1861), which was twice as big and had an all-iron hull.<ref> see [http://books.google.com/books?id=LPIDAAAAMAAJ&pg=PA344&dq=gloire+warrior&lr=&num=30&as_brr=0 William Pole, ed. ''The Life of Sir William Fairbairn, Bart.'' (1877) online ch 20, pp. 344ff]</ref> | ||
The | The [[Battle of Hampton Roads]] between the ironclad ''CSS Virginia'' (previously known as the ''Merrimac'') and the all-iron ''USS Monitor'' in the [[American Civil War]] in March 1862 was the first battle between ironclads. The Confederacy lacked the resources to build more, but the Union Navy built dozens of turreted ships of the ''Monitor'' type, as well as many casemated ironclad paddle-boats with heavy guns to control the inland rivers. Eirope followed these developments closely, making ''Gloire'', ''Warrior'', and ''Monitor'' the models for ship design until 1900; France and Britain took the lead, with the U.S. trailing far behind Italy and Germany. | ||
The naval race in technology pitted the Italian ''Duilio'' and the British ''Inflexible'', both completed in 1876. The Italians first planned to use four 35-ton guns on the "Duilio", but in response to the manufacturer's offer to make guns of much greater weight and power determined to adopt 60-ton guns. The British, who had planned to install 60-ton guns on the ''Inflexible'', then decided to mount 16.5-inch guns weighing 80 tons. The Italians in turn adopted 17.7-inch guns weighing 100 tons for the ''Duilio''. This competition indicated that the striving for superiority in individual ships was one of the guiding principles of naval construction. | The naval race in technology pitted the Italian ''Duilio'' and the British ''Inflexible'', both completed in 1876. The Italians first planned to use four 35-ton guns on the "Duilio", but in response to the manufacturer's offer to make guns of much greater weight and power determined to adopt 60-ton guns. The British, who had planned to install 60-ton guns on the ''Inflexible'', then decided to mount 16.5-inch guns weighing 80 tons. The Italians in turn adopted 17.7-inch guns weighing 100 tons for the ''Duilio''. This competition indicated that the striving for superiority in individual ships was one of the guiding principles of naval construction. | ||
Line 97: | Line 98: | ||
Scott developed the director firing system, which enabled all the guns of a ship to be laid onto a single target from a central aiming position. After early experimental installations from 1907 the system was fully adopted by the Royal Navy in 1913 and was critical for long-range gunfire during [[The First World War|World War I]]. The Germans developed a similar system. Guns could now be aligned in parallel, and aimed and fired in salvos, all controlled from an elevated position. Optical range finders and electrical instruments to aid in fire control were mounted in these elevated positions. Not only was the fire of all guns controlled centrally, but the shots could be "spotted" on the target. This led to a great extension of range and made it possible to fire in weather which obscured the vision of the gun crews. The elevation that could be given to guns on British ships was increased from 13° in 1909 to 40° in 1917. In the 1920s the U.S. Navy made refinements in fire control, such as having each ship fire shells with a distinctive color in bursting so that the shots of each could be distinguished. Techniques were also developed for spotting by use of cruisers or aircraft, and night firing was perfected through the use of star shells which burst over the enemy. Through such techniques the effective range of the modern 16-inch (41-cm) naval gun came to be approximately 20 miles (32 km). | Scott developed the director firing system, which enabled all the guns of a ship to be laid onto a single target from a central aiming position. After early experimental installations from 1907 the system was fully adopted by the Royal Navy in 1913 and was critical for long-range gunfire during [[The First World War|World War I]]. The Germans developed a similar system. Guns could now be aligned in parallel, and aimed and fired in salvos, all controlled from an elevated position. Optical range finders and electrical instruments to aid in fire control were mounted in these elevated positions. Not only was the fire of all guns controlled centrally, but the shots could be "spotted" on the target. This led to a great extension of range and made it possible to fire in weather which obscured the vision of the gun crews. The elevation that could be given to guns on British ships was increased from 13° in 1909 to 40° in 1917. In the 1920s the U.S. Navy made refinements in fire control, such as having each ship fire shells with a distinctive color in bursting so that the shots of each could be distinguished. Techniques were also developed for spotting by use of cruisers or aircraft, and night firing was perfected through the use of star shells which burst over the enemy. Through such techniques the effective range of the modern 16-inch (41-cm) naval gun came to be approximately 20 miles (32 km). | ||
{{main |cruiser}} | |||
The vulnerability of large but weakly protected battle cruisers at the [[Battle of Jutland]] (1916) left battle cruisers with an uncertain role in the postwar fleets. The [[Washington Treaty]] (1922) designated battle cruisers as capital ships because they were armed with guns over 203 mm. The treaty designated heavy cruisers as those with guns over 155 mm, and light cruisers as those with guns under 155 mm. The signatory navies of the U.S., Britain, Japan, France, and Italy at first concentrated on heavy cruisers and later on light cruisers. Spain also built two heavy and six light cruisers. Just before 1939 new types appeared, such as antiaircraft cruisers and new battle cruisers. | |||
===World War I=== | |||
The encounter of great battleship fleets was the centerpiece of all war planning from 1900 to 1945, following the strategic ideas of American [[Alfred Thayer Mahan]]. Yet it happened only once in World War I, and that was short and inconclusive. There were, however, a number of smaller World War I smaller engagements where gunnery was decisive. | |||
===[[Battle of Coronel]]=== | |||
A German squadron fought a one-sided engagement, staying out of range of its British opponents. The British, under lost both of their armored cruisers, ''HMS Good Hope'' with 9.2 inch guns and ''HMS Monmouth'' had 6 inch, who stood a rear guard to let their lighter vessels escape. 1,654 British sailors were killed. ''Monmouth'' was especially ineffective, as many of her guns were in casemates rather than turrets, too low to engage targets. | |||
The Germans, under Admiral [[Graf Maximilian von Spee]], escaped with only three wounded. Their armored cruisers, ''SMS Scharnhorst'' and ''SMS Gneisenau'', had 8.2 inch guns of long range. | |||
===[[Battle of the Falklands Islands]]=== | |||
In one of the few cases where [[battlecruiser]]s worked optimally, the German squadron from Coronel was annihilated, the gunnery ranges and ship speeds reversed. Britain's squadron, under Vice Admiral [[Doveton Sturdee]], had 10 killed and 19 wounded. For Germany, casualties numbered 1,817 killed, including Admiral von Spee and his two sons; four ships sank. | |||
===Dogger Bank=== | |||
===[[Battle of Jutland]]=== | |||
At the [[Battle of Jutland]] (May 31-June 1, 1916), the British battle cruiser squadron, consisting of six battle cruisers and four battleships, by chance encountered a scouting squadron of five German battle cruisers. They engaged each other in a running battle. Unknown to each side, each squadron was closely followed by their main battle fleet, and soon the entire main fleets of both sides were in view. The British fleet was stronger and the Germans decided to retreat instead of fight; they narrowly escaped. Although the German forces were outnumbered and their guns were of shorter range than those of the British, they still managed to inflict more damage on the British than they suffered in return. The military importance of the engagement was not great. The British lost three battle cruisers, three armored cruisers, and eight [[destroyer]]s, while the Germans lost one battleship, one battle cruiser, four light cruisers, and five destroyers.<ref> The British also lost 6,097 men to the German loss of 2,545.</ref> The Germans claimed a victory, pointing out the greater losses of the British fleet. The British battle cruisers blew up when hit by German shells because of their faulty gunnery technique. In an effort to increase the rate of fire, gun crews kept far more than the regulation charges inside their turrets, and also kept loaded not only the primary ammunition supply system, but also the auxiliary hoists and waiting positions. Thus, many charges were exposed to flash when the turret was struck by a German shell, resulting in an explosion sufficient to sink the ship.<ref>Nicholas A. Lambert, "'Our Bloody Ships' or 'Our Bloody System?' Jutland and the Loss of the Battle Cruisers, 1916." ''Journal of Military History'' 1998 62(1): 29-55. Issn: 0899-3718 Fulltext: [http://links.jstor.org/sici?sici=0899-3718(199801)62%3A1%3C29%3A%22BSO%22B%3E2.0.CO%3B2-P in Jstor] </ref> | |||
The tactical objectives of gunnery policy were accurate deliberate fire at long ranges in good visibility, and effective rapid fire at short ranges in the event of poor visibility. By 1914, the British Admiralty developed a tactical doctrine, intended to destroy the German fleet with medium-range independent gunfire, while avoiding German torpedoes. The methods were never tested in battle, however, for the Germans did not act as the British expected. | |||
The | |||
Moreover, by emphasizing this approach, the British failed to acquire adequate gunnery equipment for shooting at long range, creating vulnerabilities when the Grand Fleet encountered the German fleet at the Battle of Jutland in 1916.<ref> Sumida, "A Matter of Timing: The Royal Navy and the Tactics of Decisive Battle, 1912–1916," (2003).</ref> Brooks (2005)<ref> John Brooks, ''Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control'' (2005); he is sharply criticized in Sumida (2005)</ref> seeks to correct what he sees as the negative prevailing view of the Dryer Table system of gunnery fire control used by British warships at Jutland. He argues that the system worked well in the battle and that it was a superior system to the competing Argo method. Brooks further alleges that the British cruiser losses in the battle were due to tactical errors made by Vice Admiral Sir David Beatty rather than any flaw in the Dryer Table. | |||
Although the British were disappointed with their showing, the German fleet was driven back to its ports and rarely, in the two remaining years of the war, was it able to leave them. The great German fleet was indeed useless in the face of the more powerful Royal Navy. so hundreds of naval guns up to 380mm bore and 47,000 meter range were removed from the ships and sent by railway to deploy on the Western Front. | Although the British were disappointed with their showing, the German fleet was driven back to its ports and rarely, in the two remaining years of the war, was it able to leave them. The great German fleet was indeed useless in the face of the more powerful Royal Navy. so hundreds of naval guns up to 380mm bore and 47,000 meter range were removed from the ships and sent by railway to deploy on the Western Front. | ||
===Further development of powder=== | ===Further development of powder=== | ||
Gunpowder and other explosives have several roles in gunnery: the [[warhead]], the propelling charge, and possibly a separate initiating or primer charge to trigger the propellant. | |||
In World War II night engagements proved that standard smokeless powder created a flash that temporarily blinded the ships' crews. Various flash suppressors were devised and mixed with the powder, which was formed into grains for small guns and into pellets for the larger guns. The British used a multiple-based powder, Cordite N, which was relatively flash-free, but which the U.S. Navy considered to be brittle, unduly sensitive to shock, and hazardous in hot climates. As a result the U.S. developed other flashless powders and was placing one of them, Albanite, in large scale production at the end of World War II. | In World War II night engagements proved that standard smokeless powder created a flash that temporarily blinded the ships' crews. Various flash suppressors were devised and mixed with the powder, which was formed into grains for small guns and into pellets for the larger guns. The British used a multiple-based powder, Cordite N, which was relatively flash-free, but which the U.S. Navy considered to be brittle, unduly sensitive to shock, and hazardous in hot climates. As a result the U.S. developed other flashless powders and was placing one of them, Albanite, in large scale production at the end of World War II. | ||
Despite the adoption of smokeless powder, black powder still continued in use as a burster charge for projectiles until just before World War I, when more powerful and less sensitive explosives were adopted. In the U.S. Navy, trinitrotoluene ([[TNT]]) was adopted for smaller projectiles and Explosive D (ammonium picrate) for the larger ones. These continued in use throughout World War II, although by the end of the war more powerful explosives had come into use, particularly in the smaller antiaircraft projectiles. If the entire | Despite the adoption of smokeless powder as a propellant, black powder still continued in use as a burster charge for projectiles until just before World War I, when more powerful and less sensitive explosives were adopted. In the U.S. Navy, trinitrotoluene ([[TNT]]) was adopted for smaller projectiles and Explosive D (ammonium picrate) for the larger ones. These continued in use throughout World War II, although by the end of the war more powerful explosives had come into use, particularly in the smaller antiaircraft projectiles. If the entire spectrum of powder uses is considered--torpedoes, mines, aerial bombs, and rockets, as well as large and small projectiles--the trend in explosive development, beginning with the adoption of smokeless powder, was to recognize the special demands of various uses and to formulate specialized compounds tailor-made to particular requirements. | ||
===End of the battleships=== | ===End of the battleships=== | ||
The Royal Navy sank the Italian fleet in Nov. 1940 at the [[Battle of Taranto]] using warplanes from [[aircraft carrier]]s. The Japanese took note and at the [[ | The Royal Navy sank the Italian fleet in Nov. 1940 at the [[Battle of Taranto]] using warplanes from [[aircraft carrier]]s. The Japanese took note and at the [[Pearl Harbor (World War II)|attack on Pearl Harbor]] (Dec. 7. 1941), sank nearly the entire American battleship fleet using carrier planes. Immediately, the carrier replaced the battleship as the capital ship of seapower. | ||
The role of naval gunfire in supporting amphibious operations remains of | The era of big-gun battles between fleets at 30,000 yards was (almost) over, with the final engagement involving guns only between the battlecruiser ''[[KMS Scharnhorst]]'' and the battleship ''[[HMS Duke of York]]'' at the [[Battle of North Cape]]. While torpedoes did much of the damage, the last engagement with big-gun ships engaging one another was the [[Battle of Surigao Strait]] during the [[Battle of Leyte Gulf]] in 1944. | ||
Heavy guns were useful for shore bombardment, but for combat were replaced by bombs and rockets delivered by air. Against ships, submarine and surface [[torpedo]]es, and aerial gravity bombs, became the most important weapons, with [[air-to-surface missile]]s such as the German [[Fritz-X]], and the Japanese [[kamikaze]], seen at the end of the war. | |||
The role of naval gunfire in supporting amphibious operations remains controversial, especially as to whether there are advantages to shells of greater than 155mm or possibly 203mm. Beyond the scope of this form of bombardment, seaborne weapons also have a share in land attack with precision-guided [[cruise missile]]s or nuclear ballistic missiles against targets deep in continental landmasses; this mission involves the use of missiles fired underwater from submarines. | |||
===Anti-aircraft gunnery=== | ===Anti-aircraft gunnery=== | ||
The rapid development of the warplanes after 1914 necessitated a means of defense. Guns of secondary batteries were given sufficient elevation for use in air attacks, and projectiles and fuses for use against aircraft were developed. With the onset of World War II, 20mm Oerlikon (which were too light) and especially 40mm Bofors automatic guns were used in increasing numbers, especially against Japanese Kamikaze planes. | The rapid development of the warplanes after 1914 necessitated a means of defense. Guns of secondary batteries were given sufficient elevation for use in air attacks, and projectiles and fuses for use against aircraft were developed. With the onset of World War II, 20mm Oerlikon (which were too light) and especially 40mm Bofors automatic guns were used in increasing numbers, especially against Japanese Kamikaze planes. Anti-aircraft gunnery was a tradeoff between 5" guns, with their long range, and 20 and 40 calibre short-range guns with a high rate of fire. | ||
{{seealso|radar}} | |||
{{main|proximity fuze}} | |||
The breakthrough came in 1943 with the introduction of the '''[[proximity fuze]]''' (or "VT fuze") in 5" shells. It had a radio and receiver and when a signal bounced back, it was within range of the target, and exploded. The effect was to make the target 50 times bigger and thus much easier to hit. The fuzes played a decisive role in defeating the Japanese Kamikaze attacks of 1944-45. | |||
The British had invented the device but lacked the massive industrial capacity needed to produce it in quantity, so shared the blueprints with the U.S. Navy. The basic components are a vacuum tube (six inches long and three inches in diameter) a battery, and a radio transmitter and receiver, all of which have to be rugged enough to withstand 20,000 Gs when shot out of a gun at high velocity. After the shell is fired and begins rotating, a chemical reaction produces an electrical charge which in turn arms the shell and sends out a radio impulse. The return signal, reflected from the target, detonates the shell prior to impact and produces the devastating effects.<ref>The Germans started in 1930 but never invented a working device. Geoffrey Bennett, "The Development of the Proximity Fuze." ''Journal of the Royal United Services Institute for Defence Studies'' 1976 121(1): 57-62. Issn: 0953-3559; Ralph B. Baldwin, ''The Deadly Fuze: Secret Weapon of World War II.'' (1980); Cameron D. Collier, "Tiny Miracle: the Proximity Fuze." ''Naval History'' 1999 13(4): 43-45. Issn: 1042-1920 Fulltext: [[Ebsco]]</ref> | |||
==Into the 21st century== | |||
Since the end of World War II, the emphasis within antiaircraft defense batteries has shifted from these weapons to 3- to 5-inch (75 to 127mm) guns fitted for automatic loading and aiming. The rate of fire of these guns has been greatly increased over that of earlier guns of similar sizes. | |||
See guided missile for the weapons that are, in many but not all applications, replacing guns. The missiles are usually part of a larger system including [[radar]], control computers, and workstations for specialized personnel. The [[AEGIS battle management system]] is one such complex that supports [[anti-air warfare]] and [[ballistic missile defense]], as well as [[land attack]]. | |||
Guns are principally used for attacking close land targets or for [[Controlling close support to ground forces|naval gunfire support]] to land forces. The AN/[[SYQ-27]] Naval Fire Control System is a current U.S. system for controlling the MK-160 gun weapon system (GWS) using the 5-inch, 62-caliber gun can interface to AEGIS, adding land targets to its [[common operational picture]]. | |||
Guns, such as the [[Phalanx close-in weapons system]], have been used for final defense against [[anti-shipping missile]]s (ASM), but are becoming inadequate to deal with new classes of higher-performance ASMs. In the U.S. Navy, the replacement is the [[RIM-116 Rolling Airframe Missile]]. | |||
[[Autocannon]], such as the 24mm [[M242 Bushmaster]], are installed to deal with threats from small boats, as well as helicopters and small [[unmanned aerial vehicle]]s. The boat threat is a special matter of concern when suicide attacks, such as that on the ''USS Cole'', are a real possibility. | |||
The threat of | |||
Advanced long-range guns for shore bombardment, sometimes with rocket-assisted [[guided shells]], are being explored for naval gunfire support. The most exotic approach, the [[Vertical Advanced Gun System]], has been deferred in favor of a modern advanced automatic turret mount, remotely fired and loaded from a magazine. <ref name=AGS>{{Citation | |||
| title = United States of America 155 mm/62 (6.1") AGS | |||
| date = 06 September 2007 | |||
| url = http://www.navweaps.com/Weapons/WNUS_61-62_ags.htm}}</ref> Rather than the 127mm/5" guns common to contemporary destroyers, the new AGS will use a 155mm caliber, the standard size for shore-based weapons, which will allow more common development. | |||
====Notes==== | ====Notes==== | ||
{{reflist|2}}[[Category:Suggestion Bot Tag]] | |||
[[Category: |
Latest revision as of 13:42, 3 October 2024
Naval guns are artillery weapons on ships; although they are descended from land-based weapons, they quickly became specialized weapons, because of the particular technical issues involved in their use on vessels. With the rise of naval artillery, firing projectiles at opposing vessels mostly replaced the previous methods of fighting at sea, including ramming and boarding. For many current applications, they have been replaced by guided missiles; this is a blurry line as guided shells increasingly are used in modern naval guns.
Naval guns are now used primarily as defensive measures against small boat or missile attacks, and for shore bombardment; the bombardment role is the primary area of active research and development (e.g., 5"-62 caliber gun, although some autocannon are under development for point defense (e.g., Oerlikon Skyshield) and against small boats (e.g., 25mm Bushmaster), especially potential suicide attackers.
They first appeared in Korea in the 1370s[1], and they came into general use in the West in the 15th century, and in the East by the mid-16th century.
The years between 1500 and 1941 comprised an era in naval history in which all the major fleets were built around platforms that could shoot bigger and more accurate guns. Major advancements came with the operational use of armored warships at the Battle of Hampton Roads (1862) and the introduction of the radical new design of the first "all-big gun" battleship, HMS Dreadnought (1905). The supremacy of gun-armed battleships yielded to the aircraft carrier and land-based aviation, with the role of aircraft the Battle of Taranto, in crippling the German Bismarck, the attack on Pearl Harbor, and the sinking of HMS Repulse and HMS Prince of Wales in 1941. The last battleship-versus-battleship engagement was the Battle of Surigao Strait in 1945, although torpedoes played a major part. The last combat involving major ships and settled only by gunfire, were the Battle of North Cape and Battle of the Komandorski Islands in 1943.
anti-aircraft guns were important defenses in the Second World War, but, the advent of anti-shipping missiles, principally in the form of the Japanese kamikaze but also the German Fritz-X, signaled a trend to surface-to-air missiles.
The most basic problem faced by naval guns, as opposed to shore artillery, is that the guns have to be aimed from moving platforms at other moving platforms, with wave motion adding the third dimension.
Next, by basic physics, any cannon being fired will exert a backwards force, recoil. On shore, part of the shock of recoil could be taken up by the ground, but, with sailing warships, that force was transmitted to the wooden structure, of limited strength.
Until mechanical means of managing recoil were invented, a ship's cannon, of any appreciable size, would jerk backward on its wheeled mounting. At best, it would have to be rolled back to aim the next shot, or it could crush unwary crewmen behind it. At worst, the force would break the carriage and create the literal "loose cannon," with a ton or more of metal smashing that which came into its path.
First guns in East Asia: 14th-16th centuries
The world's first naval guns were used by the Koreans to counter Japanese piracy during the Goryeo Dynasty.[2] A rocket was fired experimentally from a ship for the first time in 1373,[1] but it was not until 1377 when new ships were built with designs to deploy the artillery.[3] Much credit for this development is given to a civil servant named Choe Mu-seon, who acquired the manufacturing techniques for gunpowder in 1375 and eliminated Korea's reliance on the imported gunpowder and gunpowder weapons from China. The naval gun's superiority to the traditional means of naval engagement was greatly demonstrated in the Battle of Jinpo in 1380, in which 40 Korean navy ships engaged a Japanese pirate fleet at the mouth of the Geum River and sank all 500 ships with cannons and rockets.[2][4]
Although the gunpowder and the rocket originated in China, the Chinese never applied them to naval warfare until the later years of the Ming Dynasty.[5]
First guns in Europe: 15th century
In Europe, the first authenticated mention of a naval gun came in the early 15th century, shortly after the appearance of land-based artillery. Italian and English warships carried guns by 1440. They were about 4 feet long with 4-inch caliber.[6]
The early guns were simple tubes built up from long bars of iron held together with iron bands. These guns were breechloaders with a separate gunpowder chamber, or servidor, which was wedged into the breech after the stone or iron cannon ball, had been inserted. Muzzle-loading cast-bronze guns came into use soon after the wrought-iron breechloaders. Cast-iron guns came into being soon after cast-bronze guns. Despite distinct advantages of cast iron, its heaviness, the rust factor and the great danger to crewmen when it burst meant that for centuries heavy cast-iron and lighter cast-bronze guns (which split rather than burst) were both used.
In the mid-16th century, cast-iron, cast-bronze, and banded wrought-iron guns were all used aboard ship, as is evidenced by the salvage of the Mary Rose the flagship of English King Henry VIII (sunk in 1545 and salvaged in 1836) which contained guns of all three types. Arrows and stones, used in early guns, gave way to cast-iron balls.[7]
The earliest gunpowder was a finely ground mixture of charcoal, saltpeter, and sulfur. This mixture, known as "serpentine powder," tended to absorb moisture, to separate into its components while being transported; it did not burn if packed too tightly into a gun. By the 15th century gunners used corned powder which was pressed into pellets and screened to a uniform size.
Gun mounts were improved over time. In early galleys, a light gun was placed in a wooden holder and tied to the deck. A heavy post at the breech prevented recoil. Bigger guns would break loose so ropes were used to permit the holder to slide back. Eventually four small wooden wheels were attached to the holder, making a carriage. To check the recoil, a heavy rope or "breeching" was run from the breech of the gun to the side of the ship.
As guns were added to ships, the architecture of the ships was modified radically. Small oar-driven galleys gave way to larger ships powered by sails. In the Mediterranean, the galleass, which used both oars and sails, came into widespread use. Its guns were arranged at intervals along the sides and over the rowers' heads. In the North Atlantic, the galleys were abandoned in favor of small sailing vessels which gradually gave way to larger ships, such as the half-moon shaped galleons. The sailing ship had the advantage that the guns did not interfere with rowers. Large sailing vessels were built with sides curving inward ("tumbled home") above the waterline, thereby strengthening the ship and making it a more steady gun platform, while offering a sloping target to enemy shells.
The gunport, which could remain watertight when closed, was invented by Descharges of Brest, in 1501.[8] They made it possible to post guns on different decks along the sides of the vessel and marked an important step toward the development of the broadside ship. One of the earliest of large armed ships, the new Swedish Makalos, destroyed by the Danes in 1564, carried 178 guns, including 67 cannons and smaller weapons which were mounted on swivels. The Spanish Philip which engaged the English in 1591 carried three tiers of guns on each side with eleven pieces to the tier. This ship also had eight guns forward and several astern. The heaviest gun then in use in the English Navy was the culverin weighing 4,500 pounds (2,000 kg) and firing a 17-pound (8-kg) ball with an extreme range of 2,500 yards. Next in size was the demicannon weighing 4,000 pounds (1,800 kg), which fired a 30-pound (14-kg) ball to 1,700 yards; smaller guns included the cannon-petroe or periers, sakers, minions, and falconets. The maximum range of these guns was at best 500 yards. The shells wobbled in flight, losing velocity as they sliced off in any which direction.[9]
Technique for using guns in battle was described as follows in a Spanish lecture of about 1530: Bow guns or broadside guns on the side from which boarding was planned were fired only when the ships were relatively close to each other, the lower guns firing at the waterline and the upper guns and smaller cannon at the sides, sails, masts, and men on the poop deck. The crossbowmen and harquebusiers did not fire until the enemy was very close or in the act of boarding.
The decisive role of the new guns was shown in a sea fight off Preveza, Greece, in 1538 and was confirmed in the victory of the Christians over the Turks in the Battle of Lepanto in 1571. At Lepanto, heavy guns mounted on the galleasses, broke up the charges of Turkish vessels, which were using ramming tactics. Small arms such as harquebues, were probably more important than bows and other hand weapons in close-range fighting. Spanish novelist Miguel de Cervantes, hit three times at Lepanto by gunfire, has Don Quixote cry out, "Blessed be those happy ages that were strangers to the dreadful fury of these devilish instruments of artillery, whose inventor I am satisfied is now in hell, receiving the reward of his cursed invention." Lepanto marked the first major use of naval artillery in the west. The galleasses used sails, not oars; their high sides suited the harsh ocean conditions and made an ideal gun platforms. The Turks relied too long on oar-driven manpower-intensive galleys, unfit for long voyages or heavy seas. The great European sailing ships with their big guns and huge cargo capacity gave the West a decisive advantage in the conquest and colonization of the globe. The Ottoman Empire, still by far the leading Muslim power, fell further and further behind.
In 1588, the English repelled the Spanish Armada in part by using their guns from long range, which prevented the Spanish from closing for hand-to-hand fighting.[10] Thus, in the 16th century, the gun proved to be an important and sometimes decisive factor in naval warfare. This was formally recognized in 1618 when the English Commission on Naval Reform reported that sea fights were "chiefly performed by the great artillery breaking down masts, yards, tearing, raking, and bilging the ships. ..."
Iron sheets hung over the sides were used in 16th century Venice and Korea to protect against enemy fire; it gave a "tortoise" look. In the 1790s the Americans protected the frigate Constitution (Old Ironsides) with 22 inches of oak wood at the waterline, and 19 inches above the gun deck.
Gunnery science
Gunnery was a mysterious art because every element was variable. Shot was never uniform, because of careless manufacture and rusting in storage. Gunpowder varied even more in terms of strength and burning rate; the bore of the guns varied in size. Even the mathematical models proposed for predicting the trajectory of projectiles through the air varied among mathematicians. A British scientist, Benjamin Robins (1707–1751), in the 1740s, put forward basic theories and supporting experimental data which put ballistics into the framework of Newtonian mechanics and formed the basis of the science of ballistics. For example, by applying Newton's second law to velocity measurements at varying ranges, Robins measured the air-resistance that slowed balls in flight. Robins proposed that the bore of the cannon be enlarged, that they be equipped with snug-fitting balls, and that they be fired with decreased charges of powder. This, he argued would increase destructive power, since the larger ball with a relatively low velocity would do more damage than would a smaller one. He further urged that careful attention be given to designing new guns to eliminate unnecessary weight.[11]
In A Proposal for Increasing the Strength of the British Navy (1747) Robins proposed a new naval gun design based on his models, and in 1779, the carronade was invented to incorporate Robins' ideas. These short-barreled, light-weight, large-bore guns used a small powder charge and the same projectile as did the long guns. As Continental scientists like Leonhard Euler developed Robins' ideas, Navies across Europe hurried to adopt Robins' proposals.[12] The British put carronades on existing ships and armed many of the smaller warships, such as frigates, sloops, and brigs, entirely with carronades. Similar guns were put into service by the Dutch, French, Spanish, and American navies. The carronade's short range eventually led to loss of interest in it as a naval weapon. In two actions during the War of 1812, this shortcoming was an important factor in determining the victor. In the Battle of Lake Erie, American forces fought with long guns from beyond the range of British ships, and the English commodore reported, "We remained in this mortifying situation five hours, having only six guns in all the squadron that would reach the enemy, not a carronade being fired."[13] In another action, the British ships Phoebe and Cherub, armed with long guns, captured the American frigate Essex, which was equipped almost entirely with carronades. Despite its shortcomings, the carronade demonstrated the importance of quick-firing weapons and the need to use projectiles which fitted snugly into the bore of the gun.[14]
Fire ships and mortars
Naval gunnery focused on the broadside ship and the long guns that served as decisive elements in combat. For other naval purposes, however, other gunnery devices were used. The "fire ship" which was loosed into enemy ship concentrations was a weapon of antiquity. With the development of gunpowder, powder ships were used in preference to fire ships. For example, in a 1693 attack on the French port of Saint-Malo, the British Commodore Benbow loaded a galliot with 100 barrels of powder and 340 chests containing cannon balls, iron chains, large pieces of metal, and other destructive missiles. This ship was cast adrift and grounded on a rock in the harbor where it exploded, blowing down part of the town wall and severely damaging the houses.
In addition to powder boats, bomb ketches were used for attacking facilities ashore. These were equipped with mortars, cannon with a large bore and a short barrel which threw their projectiles at a high angle and were particularly well suited for attacking targets protected by heavy walls. The French in the siege of Algiers in 1681 used seven bomb ketches, or galliotes-à-bombes, each mounting two mortars, some of which were 14-inch caliber and threw 140-pound projectiles. These projectiles were perforated or laced envelopes containing conbustibles and were ignited by the explosion of the propellant charge.
Explosive shells
Hollow shells filled with gunpowder proved more effective than fire ships. The powder was exploded by means of a slow match (burning fuse). Bomb ketches were often used to bombard ports and shore fortifications. However, the risk of fire or premature explosion was so serious that captains avoided firing explosive shells from their long guns. In 1788, the Russian navy sent Admiral John Paul Jones with a flotilla of long boats fitted with brass ordnance to attack a Turkish squadron on the Sea of Azov; the use of explosive shells gave Jones complete victory.[15]
Explosive shells became popular thanks to a French artillery officer, Henri-Joseph Paixhans, who in the 1820s proposed a new system of gunnery. Paixhans showed how the new steam-powered ship could become a warship. He argued that all guns aboard a ship be of the same bore--and that explosive shells be used, thereby simplifying their use and augmenting their destructiveness. Paixhans demonstrated that explosive shells could destroy wooden ships, and he proposed to protect the ships by encasing their sides with iron plates; this led to the development of armored naval vessels. The French in 1829 standardized on a single caliber (a 30-pounder) which was made in different weights for use on the various decks and classes of ships. In 1837 France adopted a Paixhans-design shell gun, but of much larger bore than the 30-pounder. The Royal Navy in 1839 adopted six patterns of 32-pound long guns, associating with them a few eight-inch shell guns. Other countries quickly added Paixhans-style guns. [16]
Projectiles
The projectiles which were used through the early 19th century varied depending upon the target. Solid cast-iron balls were used in attacking the hulls of other ships. Chain shot, consisting of two shot secured to each other with a length of chain, and bar shot, consisting of two solid hemispheres secured by a bar, were effective at short range against sails and rigging but were very inaccurate in their flight.
Canister and grape shot were used against the crews. Canister was a tin cylinder fitting the bore of the gun and packed with musket balls. Grape shot consisted larger balls held in a cylindrical frame. Both types broke up on leaving the muzzle, with the clustered balls dispersing. These were especially effective when fired from carronades in short-range engagements, such as before sending fighting men to board the enemy vessel.
Shrapnel
Grape and canister were replaced after Henry Shrapnel in 1784 devised a thin-cased shell containing musket balls and a powder bursting charge. A burning fuse ignited the powder while the shell was in flight and liberated showers of small missiles.[17] Hot shot also came into use against wooden hulls. It was fired with just sufficient velocity to splinter the wooden sides and render them favorable for burning when ignited by the red-hot cannonball.
18th century gunnery
The techniques of gunnery remained fairly static before the 1870s. Constant drill speeded the maximum rate of fire from one round every five minutes (1660s) to one round a minute (1760s). Rate of fire and weight of the shells in a broadside was more important than accuracy when the enemy was close. The ship of the line, or broadside ship, with heavy guns mounted on the lower deck just above the waterline and with lighter guns on higher decks, remained the dominant factor in naval warfare despite many small improvements.[18]
The 19th century gunnery revolution
The 19th century saw striking advances in technology. The steam engine was adopted for marine propulsion after 1820; ships were built of iron after 1850; guns increased in size and power, and steel armor was added to battleships. High explosives were invented and better powder. These innovations came about almost simultaneously and affected each other. Steam power was used to manipulate heavy guns. Iron hulls allowed larger ships than had been possible with wood, and larger guns could consequently be carried. Advances in metallurgical led to stronger hulls, stronger guns, and armor plate to protect against the enemy's shells. As the armor grew thicker and stronger the guns had to be more powerful, and the entire warship became much larger and more stable.
Many steps were involved in this process and basic advances were sometimes abandoned because they were beyond the technology of the day. For example, the first naval vessel to be fitted with screw propellers, the U.S. Navy's Princeton, was also fitted with two 12-inch, wrought-iron guns. These guns proved to be beyond the metallurgy of the period and during a public demonstration in 1844 one of them burst, killing five people including high officials.[19] In 1854 a British engineer, William Armstrong, perfected techniques for making guns of wrought iron. Almost simultaneously, Alfred Krupp of Germany began making guns from cast steel ingots. Their fabrication techniques made possible the high-power guns which came to characterize naval ordnance. Krupp and Armstrong each designed breech-loading mechanisms and fitted their guns with both rifled and smooth-bore barrels. Breechloaders achieved definite superiority over muzzle-loaders. The greater range, velocity, and accuracy which were the advantages of rifled guns were offset by the higher stresses imposed on the barrel and by other design problems. Rifled small arms had been in use for hundreds of years, but their advantages of greater accuracy and longer effective range were largely offset by the disadvantage of slow rate of fire until, in the 1850s, elongated bullets permitting rapid loading. To provide strength to withstand the increased working pressure of large rifled guns, the French in 1859 introduced a technique of reinforcing with hoops of puddled steel.
During the American Civil War, Lt. John M. Brooke of the Confederate Navy built rifled cast-iron guns hooped with wrought-iron rings. The American effort, however, went into improving cast-iron smooth-bore guns. John A. Dahlgren of the U.S. Navy greatly improved the shape of long guns. He measured the exact amount of strain and its location within the gun and proportioned the parts of the gun with reference to this strain. He abandoned both the ornamentation and the traditional shape for heavy guns. T. J. Rodman invented a way to cast guns hollow and cooling the inner surfaces while the metal hardened. This redistributed the strains within the gun and overcame the elastic peculiarities of cast iron, making it possible to cast guns with a bore of up to twenty inches and a gross weight of nearly 60 tons, but with a life comparable to that of smaller guns.
Turrets
The old wooden naval gun carriages mounted on wheels and using a heavy rope breeching to absorb recoil were replaced by iron carriages fitted on an inclined slide. Various devices, such as the friction of interlaced iron plates, were used for absorbing recoil. The gun carriages were fitted with wheels running on concentric tracks, thereby simplifying the training of the guns. The pivot gun, achieving its best development during the War of 1812, offered a 70 degree arc of fire but still required the ship to be turned for fore and aft targets.
American John Ericsson and Royal Navy Captain Cowper Phipps Coles developed the first practical revolving turrets. Ericsson's 1854 design was used on the Monitor (1862) and the coastal ships of that type during the Civil War. Coles designed a turret for a raft in 1855 and took out a patent for an improved design in 1859. A Danish warship built in Britain in 1863 had two revolving turrets based on Coles's design. The Royal Navy began using turreted guns in 1864. Seagoing Royal Navy turret ships of the 1860s had masts and rigging, a protective forecastle, and a poop on the stern, which together limited the arc of fire to 120 to 132 degrees. The weight of the hull armor, turrets, and masts made these ships dangerously top heavy. The steam-powered Devastation, built in Britain in 1873, was the first ocean-going turreted warship and the first modern battleship.[20] The Coles turret system became the standard until the 1890s. Steam powered turntables, however, offered far from perfect control of the turning motion, and in the mid-1870s, William Armstrong perfected the application of hydraulic power to gun turrets. As developed by the Armstrong Company of Britain and first used in the HMS Dreadnought (1875), hydraulic power was applied to all the principal operations of working the gun, such as checking the recoil and moving the gun in or out along the slides and ramming home the powder and charge. Thus, the basic problems of designing carriages for heavy naval guns were solved. The U.S. Navy adopted electric drives, which were eventually superseded by variable-speed gears. Power drives also operated the smaller secondary batteries which served tactically for close-range attacks. The battleship turret, developed in the 1860s, was a mainstay of naval armament from the 1870s until the 1940s.[21]
Paixhans and his followers immediately realized the need to protect their ships from the penetrating power of rifled shot. Iron plates 7 inches thick proved vulnerable to 8-inch shells. As a rule of thumb, another inch of armor was needed for every inch of shell diameter. Armor was very heavy, so the ship had to be enlarged to carry big guns and thick armor. The French breakthrough came with the Gloire (1859), built wood covered by 4.5 inch iron plates from the main deck to below the waterline; the 5600 ton battleship carried 30 6.5 inch guns and boasted a top speed of 14 knots. It was a major breakthrough and but Britain leapfrogged it in 1860 with the Warrior (1861), which was twice as big and had an all-iron hull.[22]
The Battle of Hampton Roads between the ironclad CSS Virginia (previously known as the Merrimac) and the all-iron USS Monitor in the American Civil War in March 1862 was the first battle between ironclads. The Confederacy lacked the resources to build more, but the Union Navy built dozens of turreted ships of the Monitor type, as well as many casemated ironclad paddle-boats with heavy guns to control the inland rivers. Eirope followed these developments closely, making Gloire, Warrior, and Monitor the models for ship design until 1900; France and Britain took the lead, with the U.S. trailing far behind Italy and Germany.
The naval race in technology pitted the Italian Duilio and the British Inflexible, both completed in 1876. The Italians first planned to use four 35-ton guns on the "Duilio", but in response to the manufacturer's offer to make guns of much greater weight and power determined to adopt 60-ton guns. The British, who had planned to install 60-ton guns on the Inflexible, then decided to mount 16.5-inch guns weighing 80 tons. The Italians in turn adopted 17.7-inch guns weighing 100 tons for the Duilio. This competition indicated that the striving for superiority in individual ships was one of the guiding principles of naval construction.
Innovations in powder
To obtain maximum effectiveness from the longer barrel, the burning rate of the gunpowder needed to be closely controlled. Experiments allowed chemical engineers to optimize the size and shape of powder particles in terms of rate of burning. In the 1880s brown powder made from under-burnt charcoal was adopted as one means of slowing the burning rate. However, only half of the mixture was converted into gas, the remainder becoming a dense smoke. The French in 1886 adopted smokeless powder made of nitrocellulose (gun-cotton). Four years later, the Royal Navy began using smokeless powder made from a nitroglycerine base. Both these compounds liberated four to five times as much energy as did the black powder used earlier. In addition, these chemically homogeneous powders could be shaped into hollow grains so shaped as to control the rate of burning. This gave a uniform pressure, permitting a higher projectile velocity without straining the gun. Propellants based on nitrocellulose or nitroglycerine were described as "single-base" powder; others containing both were described as "double-base"; and a third category containing nitrocellulose, nitroglycerine, and other chemicals was called "triple-base" or "multiple-base." By 1900, the U.S. Navy followed the lead of the French and adopted a nitrocellulose powder as a propellant charge.
20th century
Armor was the central issue by the late 1880s. If any one factor can be isolated as stimulating developments of the later years of the 19th century--improved materials (wrought-iron and then steel), increases in size, improvements in projectiles, mechanization, and improved powder--it was the necessity of penetrating armor, which was itself also rapidly improved. The ranges of guns were also being greatly increased.
Fire control
The necessity of fighting at maximum range, which was gradually recognized, called for a high degree of accuracy, so that shells could be placed on a target many miles distant. The ship with longer range would have a decisive advantage, since it could fire from outside the enemy's range. In 1892, Bradley A. Fiske of the U.S. Navy invented the telescopic sight for accurate shooting at long range. By 1906, periscopic gun sights greatly improved accuracy, while range finders provided an accurate measure of the distance to a target. Percy Scott of the British Navy and William S. Sims of the U.S. Navy championed the importance of accurate long-range shooting, and devised training techniques whereby the potential which had been given to naval guns could be achieved.[23]
Scott developed the director firing system, which enabled all the guns of a ship to be laid onto a single target from a central aiming position. After early experimental installations from 1907 the system was fully adopted by the Royal Navy in 1913 and was critical for long-range gunfire during World War I. The Germans developed a similar system. Guns could now be aligned in parallel, and aimed and fired in salvos, all controlled from an elevated position. Optical range finders and electrical instruments to aid in fire control were mounted in these elevated positions. Not only was the fire of all guns controlled centrally, but the shots could be "spotted" on the target. This led to a great extension of range and made it possible to fire in weather which obscured the vision of the gun crews. The elevation that could be given to guns on British ships was increased from 13° in 1909 to 40° in 1917. In the 1920s the U.S. Navy made refinements in fire control, such as having each ship fire shells with a distinctive color in bursting so that the shots of each could be distinguished. Techniques were also developed for spotting by use of cruisers or aircraft, and night firing was perfected through the use of star shells which burst over the enemy. Through such techniques the effective range of the modern 16-inch (41-cm) naval gun came to be approximately 20 miles (32 km).
The vulnerability of large but weakly protected battle cruisers at the Battle of Jutland (1916) left battle cruisers with an uncertain role in the postwar fleets. The Washington Treaty (1922) designated battle cruisers as capital ships because they were armed with guns over 203 mm. The treaty designated heavy cruisers as those with guns over 155 mm, and light cruisers as those with guns under 155 mm. The signatory navies of the U.S., Britain, Japan, France, and Italy at first concentrated on heavy cruisers and later on light cruisers. Spain also built two heavy and six light cruisers. Just before 1939 new types appeared, such as antiaircraft cruisers and new battle cruisers.
World War I
The encounter of great battleship fleets was the centerpiece of all war planning from 1900 to 1945, following the strategic ideas of American Alfred Thayer Mahan. Yet it happened only once in World War I, and that was short and inconclusive. There were, however, a number of smaller World War I smaller engagements where gunnery was decisive.
Battle of Coronel
A German squadron fought a one-sided engagement, staying out of range of its British opponents. The British, under lost both of their armored cruisers, HMS Good Hope with 9.2 inch guns and HMS Monmouth had 6 inch, who stood a rear guard to let their lighter vessels escape. 1,654 British sailors were killed. Monmouth was especially ineffective, as many of her guns were in casemates rather than turrets, too low to engage targets.
The Germans, under Admiral Graf Maximilian von Spee, escaped with only three wounded. Their armored cruisers, SMS Scharnhorst and SMS Gneisenau, had 8.2 inch guns of long range.
Battle of the Falklands Islands
In one of the few cases where battlecruisers worked optimally, the German squadron from Coronel was annihilated, the gunnery ranges and ship speeds reversed. Britain's squadron, under Vice Admiral Doveton Sturdee, had 10 killed and 19 wounded. For Germany, casualties numbered 1,817 killed, including Admiral von Spee and his two sons; four ships sank.
Dogger Bank
Battle of Jutland
At the Battle of Jutland (May 31-June 1, 1916), the British battle cruiser squadron, consisting of six battle cruisers and four battleships, by chance encountered a scouting squadron of five German battle cruisers. They engaged each other in a running battle. Unknown to each side, each squadron was closely followed by their main battle fleet, and soon the entire main fleets of both sides were in view. The British fleet was stronger and the Germans decided to retreat instead of fight; they narrowly escaped. Although the German forces were outnumbered and their guns were of shorter range than those of the British, they still managed to inflict more damage on the British than they suffered in return. The military importance of the engagement was not great. The British lost three battle cruisers, three armored cruisers, and eight destroyers, while the Germans lost one battleship, one battle cruiser, four light cruisers, and five destroyers.[24] The Germans claimed a victory, pointing out the greater losses of the British fleet. The British battle cruisers blew up when hit by German shells because of their faulty gunnery technique. In an effort to increase the rate of fire, gun crews kept far more than the regulation charges inside their turrets, and also kept loaded not only the primary ammunition supply system, but also the auxiliary hoists and waiting positions. Thus, many charges were exposed to flash when the turret was struck by a German shell, resulting in an explosion sufficient to sink the ship.[25]
The tactical objectives of gunnery policy were accurate deliberate fire at long ranges in good visibility, and effective rapid fire at short ranges in the event of poor visibility. By 1914, the British Admiralty developed a tactical doctrine, intended to destroy the German fleet with medium-range independent gunfire, while avoiding German torpedoes. The methods were never tested in battle, however, for the Germans did not act as the British expected.
Moreover, by emphasizing this approach, the British failed to acquire adequate gunnery equipment for shooting at long range, creating vulnerabilities when the Grand Fleet encountered the German fleet at the Battle of Jutland in 1916.[26] Brooks (2005)[27] seeks to correct what he sees as the negative prevailing view of the Dryer Table system of gunnery fire control used by British warships at Jutland. He argues that the system worked well in the battle and that it was a superior system to the competing Argo method. Brooks further alleges that the British cruiser losses in the battle were due to tactical errors made by Vice Admiral Sir David Beatty rather than any flaw in the Dryer Table.
Although the British were disappointed with their showing, the German fleet was driven back to its ports and rarely, in the two remaining years of the war, was it able to leave them. The great German fleet was indeed useless in the face of the more powerful Royal Navy. so hundreds of naval guns up to 380mm bore and 47,000 meter range were removed from the ships and sent by railway to deploy on the Western Front.
Further development of powder
Gunpowder and other explosives have several roles in gunnery: the warhead, the propelling charge, and possibly a separate initiating or primer charge to trigger the propellant.
In World War II night engagements proved that standard smokeless powder created a flash that temporarily blinded the ships' crews. Various flash suppressors were devised and mixed with the powder, which was formed into grains for small guns and into pellets for the larger guns. The British used a multiple-based powder, Cordite N, which was relatively flash-free, but which the U.S. Navy considered to be brittle, unduly sensitive to shock, and hazardous in hot climates. As a result the U.S. developed other flashless powders and was placing one of them, Albanite, in large scale production at the end of World War II.
Despite the adoption of smokeless powder as a propellant, black powder still continued in use as a burster charge for projectiles until just before World War I, when more powerful and less sensitive explosives were adopted. In the U.S. Navy, trinitrotoluene (TNT) was adopted for smaller projectiles and Explosive D (ammonium picrate) for the larger ones. These continued in use throughout World War II, although by the end of the war more powerful explosives had come into use, particularly in the smaller antiaircraft projectiles. If the entire spectrum of powder uses is considered--torpedoes, mines, aerial bombs, and rockets, as well as large and small projectiles--the trend in explosive development, beginning with the adoption of smokeless powder, was to recognize the special demands of various uses and to formulate specialized compounds tailor-made to particular requirements.
End of the battleships
The Royal Navy sank the Italian fleet in Nov. 1940 at the Battle of Taranto using warplanes from aircraft carriers. The Japanese took note and at the attack on Pearl Harbor (Dec. 7. 1941), sank nearly the entire American battleship fleet using carrier planes. Immediately, the carrier replaced the battleship as the capital ship of seapower.
The era of big-gun battles between fleets at 30,000 yards was (almost) over, with the final engagement involving guns only between the battlecruiser KMS Scharnhorst and the battleship HMS Duke of York at the Battle of North Cape. While torpedoes did much of the damage, the last engagement with big-gun ships engaging one another was the Battle of Surigao Strait during the Battle of Leyte Gulf in 1944.
Heavy guns were useful for shore bombardment, but for combat were replaced by bombs and rockets delivered by air. Against ships, submarine and surface torpedoes, and aerial gravity bombs, became the most important weapons, with air-to-surface missiles such as the German Fritz-X, and the Japanese kamikaze, seen at the end of the war.
The role of naval gunfire in supporting amphibious operations remains controversial, especially as to whether there are advantages to shells of greater than 155mm or possibly 203mm. Beyond the scope of this form of bombardment, seaborne weapons also have a share in land attack with precision-guided cruise missiles or nuclear ballistic missiles against targets deep in continental landmasses; this mission involves the use of missiles fired underwater from submarines.
Anti-aircraft gunnery
The rapid development of the warplanes after 1914 necessitated a means of defense. Guns of secondary batteries were given sufficient elevation for use in air attacks, and projectiles and fuses for use against aircraft were developed. With the onset of World War II, 20mm Oerlikon (which were too light) and especially 40mm Bofors automatic guns were used in increasing numbers, especially against Japanese Kamikaze planes. Anti-aircraft gunnery was a tradeoff between 5" guns, with their long range, and 20 and 40 calibre short-range guns with a high rate of fire.
- See also: radar
The breakthrough came in 1943 with the introduction of the proximity fuze (or "VT fuze") in 5" shells. It had a radio and receiver and when a signal bounced back, it was within range of the target, and exploded. The effect was to make the target 50 times bigger and thus much easier to hit. The fuzes played a decisive role in defeating the Japanese Kamikaze attacks of 1944-45.
The British had invented the device but lacked the massive industrial capacity needed to produce it in quantity, so shared the blueprints with the U.S. Navy. The basic components are a vacuum tube (six inches long and three inches in diameter) a battery, and a radio transmitter and receiver, all of which have to be rugged enough to withstand 20,000 Gs when shot out of a gun at high velocity. After the shell is fired and begins rotating, a chemical reaction produces an electrical charge which in turn arms the shell and sends out a radio impulse. The return signal, reflected from the target, detonates the shell prior to impact and produces the devastating effects.[28]
Into the 21st century
Since the end of World War II, the emphasis within antiaircraft defense batteries has shifted from these weapons to 3- to 5-inch (75 to 127mm) guns fitted for automatic loading and aiming. The rate of fire of these guns has been greatly increased over that of earlier guns of similar sizes.
See guided missile for the weapons that are, in many but not all applications, replacing guns. The missiles are usually part of a larger system including radar, control computers, and workstations for specialized personnel. The AEGIS battle management system is one such complex that supports anti-air warfare and ballistic missile defense, as well as land attack.
Guns are principally used for attacking close land targets or for naval gunfire support to land forces. The AN/SYQ-27 Naval Fire Control System is a current U.S. system for controlling the MK-160 gun weapon system (GWS) using the 5-inch, 62-caliber gun can interface to AEGIS, adding land targets to its common operational picture.
Guns, such as the Phalanx close-in weapons system, have been used for final defense against anti-shipping missiles (ASM), but are becoming inadequate to deal with new classes of higher-performance ASMs. In the U.S. Navy, the replacement is the RIM-116 Rolling Airframe Missile.
Autocannon, such as the 24mm M242 Bushmaster, are installed to deal with threats from small boats, as well as helicopters and small unmanned aerial vehicles. The boat threat is a special matter of concern when suicide attacks, such as that on the USS Cole, are a real possibility.
Advanced long-range guns for shore bombardment, sometimes with rocket-assisted guided shells, are being explored for naval gunfire support. The most exotic approach, the Vertical Advanced Gun System, has been deferred in favor of a modern advanced automatic turret mount, remotely fired and loaded from a magazine. [29] Rather than the 127mm/5" guns common to contemporary destroyers, the new AGS will use a 155mm caliber, the standard size for shore-based weapons, which will allow more common development.
Notes
- ↑ 1.0 1.1 Science Contents Promotion Center
- ↑ 2.0 2.1 세계 최초의 함포탑재 전함을 개발한 최무선, KIST
- ↑ Encyclopedia Britannica on Daum.net (Korean)
- ↑ Seoul National University page
- ↑ Turnbull, 2002. pp. 16
- ↑ Kelly R. DeVries, "A 1445 Reference to Shipboard Artillery," Technology and Culture, Vol. 31, No. 4 (Oct., 1990), pp. 818-829 in JSTOR
- ↑ David Childs, "Shock and Oar: Mary Rose and the Fear French Galleys," History Today 57#4 (April 2007) pp 41+. online edition
- ↑ Alexander McKee, King Henry VIII's Mary Rose (1974) p. 23
- ↑ Effective range became much greater once rifled guns were introduced after 1850. John F. Guilmartin, Jr. "The Guns of the Santíssimo Sacramento," Technology and Culture, Vol. 24, No. 4 (Oct., 1983), p. 563
- ↑ Michael Lewis, Armada Guns: A Comparative Study of English and Spanish Armaments (1961)
- ↑ Brett D. Steele, "Robins, Benjamin (1707–1751)", Oxford Dictionary of National Biography, (2004), online from OUP
- ↑ Brett D. Steele, "Muskets and Pendulums: Benjamin Robins, Leonhard Euler, and the Ballistics Revolution," Technology and Culture, Vol. 35, No. 2 (Apr., 1994), pp. 348-382 in JSTOR
- ↑ Quoted in Theodore Roosevelt, The Naval War of 1812 (1882) page 294
- ↑ Frederick Leslie Robertson, The Evolution of Naval Armament (1921) pp 112-39
- ↑ Evan Thomas, John Paul Jones: Sailor, Hero, Father of the American Navy (2003) pp. 292-312
- ↑ John Adolphus Bernard Dahlgren, Shells and Shell-guns (1856) ch. 3
- ↑ In modern usage, the term "shrapnel" is sometimes applied to the flying pieces of metal of a shell fragmented by the exploding charge.
- ↑ Bernard Ireland, Naval Warfare in the Age of Sail (2000) pp 47-50
- ↑ Lee M. Pearson, "The "Princeton" and the "Peacemaker": A Study in Nineteenth-Century Naval Research and Development Procedures," Technology and Culture Vol. 7, No. 2 (Spring, 1966), pp. 163-183 in JSTOR; Spencer C. Tucker, "U.S. Navy Steam Sloop Princeton." American Neptune 1989 49(2): 96-113. Issn: 0003-0155
- ↑ Stanley Sandler, "The Emergence of the Modern Capital Ship," Technology and Culture Vol. 11, No. 4 (Oct., 1970), pp. 576-595 in JSTOR
- ↑ Arnold A. Putnam, "The Introduction of the Revolving Turret." American Neptune 1996 56(2): 117-129. Issn: 0003-0155
- ↑ see William Pole, ed. The Life of Sir William Fairbairn, Bart. (1877) online ch 20, pp. 344ff
- ↑ Andrew Lambert, "Scott, Sir Percy Moreton, first baronet (1853–1924)", Oxford Dictionary of National Biography, 2004; online edn, 2008; Peter Padfield, Aim Straight: a Biography of Admiral Sir Percy Scott (1965); Elting Elmore Morison, Admiral Sims and the Modern American Navy (1968)
- ↑ The British also lost 6,097 men to the German loss of 2,545.
- ↑ Nicholas A. Lambert, "'Our Bloody Ships' or 'Our Bloody System?' Jutland and the Loss of the Battle Cruisers, 1916." Journal of Military History 1998 62(1): 29-55. Issn: 0899-3718 Fulltext: in Jstor
- ↑ Sumida, "A Matter of Timing: The Royal Navy and the Tactics of Decisive Battle, 1912–1916," (2003).
- ↑ John Brooks, Dreadnought Gunnery and the Battle of Jutland: The Question of Fire Control (2005); he is sharply criticized in Sumida (2005)
- ↑ The Germans started in 1930 but never invented a working device. Geoffrey Bennett, "The Development of the Proximity Fuze." Journal of the Royal United Services Institute for Defence Studies 1976 121(1): 57-62. Issn: 0953-3559; Ralph B. Baldwin, The Deadly Fuze: Secret Weapon of World War II. (1980); Cameron D. Collier, "Tiny Miracle: the Proximity Fuze." Naval History 1999 13(4): 43-45. Issn: 1042-1920 Fulltext: Ebsco
- ↑ United States of America 155 mm/62 (6.1") AGS, 06 September 2007