Brun-Titchmarsh theorem: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(→‎References: moved Hooley to bibliography)
mNo edit summary
 
Line 15: Line 15:
==References==
==References==
* {{cite book | author=Michiel Hazewinkel | title=Encyclopaedia of Mathematics: Supplement 3 | date=2002 | pages=159 | isbn=0792347099 | url=http://eom.springer.de/b/b110970.htm}}
* {{cite book | author=Michiel Hazewinkel | title=Encyclopaedia of Mathematics: Supplement 3 | date=2002 | pages=159 | isbn=0792347099 | url=http://eom.springer.de/b/b110970.htm}}
* {{cite journal|author=Hugh L. Montgomery | authorlink=Hugh Montgomery (mathematician) | coauthors=[[Robert Charles Vaughan (mathematician)|Robert C. Vaughan]] | title=The large sieve | journal=Mathematika | volume=20 | date=1973 | pages=119-134}}
* {{cite journal|author=Hugh L. Montgomery | authorlink=Hugh Montgomery (mathematician) | coauthors=[[Robert Charles Vaughan (mathematician)|Robert C. Vaughan]] | title=The large sieve | journal=Mathematika | volume=20 | date=1973 | pages=119-134}}[[Category:Suggestion Bot Tag]]

Latest revision as of 16:01, 21 July 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

The Brun–Titchmarsh theorem in analytic number theory is an upper bound on the distribution on primes in an arithmetic progression. It states that, if counts the number of primes p congruent to a modulo q with px, then

for all . The result is proved by sieve methods. By contrast, Dirichlet's theorem on arithmetic progressions gives an asymptotic result, which may be expressed in the form

but this can only be proved to hold for the more restricted range for constant c: this is the Siegel-Walfisz theorem.

The result is named for Viggo Brun and Edward Charles Titchmarsh.

References