Characteristic function: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Giangiacomo Gerla
mNo edit summary
mNo edit summary
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
{{subpages}}
In [[set theory]], the '''characteristic function''' or '''indicator function''' of a [[subset]] ''X'' of a set ''S'' is the function, often denoted χ<sub>''A''</sub> or ''I''<sub>''A''</sub>,  from ''S'' to the set {0,1} which takes the value 1 on elements of ''X'' and 0 otherwise.
In [[set theory]], the '''characteristic function''' or '''indicator function''' of a [[subset]] ''X'' of a set ''S'' is the function, often denoted χ<sub>''A''</sub> or ''I''<sub>''A''</sub>,  from ''S'' to the set {0,1} which takes the value 1 on elements of ''X'' and 0 otherwise.


Line 27: Line 28:
* The [[Euler characteristic]], a [[topological invariant]].
* The [[Euler characteristic]], a [[topological invariant]].


* The [[cooperative game|characteristic function]] in [[game theory]].
* The [[cooperative game|characteristic function]] in [[game theory]].[[Category:Suggestion Bot Tag]]

Latest revision as of 16:00, 26 July 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In set theory, the characteristic function or indicator function of a subset X of a set S is the function, often denoted χA or IA, from S to the set {0,1} which takes the value 1 on elements of X and 0 otherwise.

We can express elementary set-theoretic operations in terms of characteristic functions:

  • Empty set:
  • Intersection:
  • Union:
  • complement:
  • Inclusion:


In mathematics, characteristic function can refer also to any several distinct concepts:


where "E" means expected value. See characteristic function (probability theory).