Cofactor (mathematics): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Richard Pinch
(New entry, just a stub)
 
mNo edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
{{subpages}}
In [[mathematics]], a '''cofactor''' is a component of a [[matrix (mathematics)|matrix]] computation of the matrix [[determinant]].
In [[mathematics]], a '''cofactor''' is a component of a [[matrix (mathematics)|matrix]] computation of the matrix [[determinant]].


Let ''M'' be a [[square matrix]] of size ''n''.  The (''i'',''j'') '''minor''' is the (''n''-1)×(''n''-1) submatrix ''M''<sub>''i'',''j''</sub> formed by deleting the ''i''-th row and ''j''-th column from ''M''.  The corresponding cofactor is the signed determinant  
Let ''M'' be a [[square matrix]] of size ''n''.  The (''i'',''j'') '''minor''' refers to the determinant of the (''n''-1)×(''n''-1) submatrix ''M''<sub>''i'',''j''</sub> formed by deleting the ''i''-th row and ''j''-th column from ''M'' (or sometimes just to the submatrix ''M''<sub>''i'',''j''</sub> itself).  The corresponding ''cofactor'' is the signed determinant  


:<math>(-1)^{i+j} \det M_{i,j} . \,</math>
:<math>(-1)^{i+j} \det M_{i,j} . \,</math>
Line 13: Line 14:


:<math>M^{-1} = (\det M)^{-1} \mathop{\mbox{adj}} M . \,</math>
:<math>M^{-1} = (\det M)^{-1} \mathop{\mbox{adj}} M . \,</math>
==Example==
Consider the following example matrix,
:<math>
M = \begin{pmatrix}
a_1 & a_2 & a_3 \\
b_1 & b_2 & b_3 \\
c_1 & c_2 & c_3 \\
\end{pmatrix}.
</math>
Its minors are the determinants (bars indicate a determinant):
:<math>
M_{11} =
\begin{vmatrix}
b_2 & b_3 \\
c_2 & c_3 \\
\end{vmatrix}\quad
M_{12} =
\begin{vmatrix}
b_1  & b_3 \\
c_1  & c_3 \\
\end{vmatrix} \quad
M_{13} =
\begin{vmatrix}
b_1  & b_2 \\
c_1  & c_2 \\
\end{vmatrix} \quad
M_{21} =
\begin{vmatrix}
a_2  & a_3 \\
c_2  & c_3 \\
\end{vmatrix} \quad
M_{22} =
\begin{vmatrix}
a_1  & a_3 \\
c_1  & c_3 \\
\end{vmatrix} \quad
</math>
:<math>
M_{23} =
\begin{vmatrix}
a_1 & a_2 \\
c_1 & c_2 \\
\end{vmatrix}\quad
M_{31} =
\begin{vmatrix}
a_2  & a_3 \\
b_2  & b_3 \\
\end{vmatrix} \quad
M_{32} =
\begin{vmatrix}
a_1  & a_3 \\
b_1  & b_3 \\
\end{vmatrix} \quad
M_{33} =
\begin{vmatrix}
a_1  & a_2 \\
b_1  & b_2 \\
\end{vmatrix} \quad
</math>
The adjugate matrix  of ''M'' is
:<math>
\mathrm{adj}M = A =
\begin{pmatrix}
M_{11} & -M_{21} &  M_{31} \\
-M_{12} &  M_{22} & -M_{32} \\
M_{13} & -M_{23} &  M_{33} \\
\end{pmatrix},
</math>
and the inverse matrix is
:<math>
M^{-1} = |M|^{-1} A\, .
</math>
Indeed,
:<math>
\begin{align}
\left( M\; M^{-1}\right)_{11} & = |M|^{-1}\left( a_1 M_{11}- a_2 M_{12} + a_3 M_{13}\right) = \frac{|M|}{|M|} = 1 \\
\left( M\; M^{-1}\right)_{21} & = |M|^{-1}\left( b_1 M_{11}- b_2 M_{12} + b_3 M_{13}\right)
=|M|^{-1}\left[ b_1(b_2c_3-b_3c_2) - b_2(b_1c_3-b_3c_1) + b_3(b_1c_2-b_2c_1)\right] = 0 ,\\
\end{align}
</math>
and the other matrix elements of the product follow likewise.
==References==
* {{cite book | author=C.W. Norman | title=Undergraduate Algebra: A first course | publisher=[[Oxford University Press]] | year=1986 | isbn=0-19-853248-2 | pages=306,310,315 }}[[Category:Suggestion Bot Tag]]

Latest revision as of 06:01, 30 July 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In mathematics, a cofactor is a component of a matrix computation of the matrix determinant.

Let M be a square matrix of size n. The (i,j) minor refers to the determinant of the (n-1)×(n-1) submatrix Mi,j formed by deleting the i-th row and j-th column from M (or sometimes just to the submatrix Mi,j itself). The corresponding cofactor is the signed determinant

The adjugate matrix adj M is the square matrix whose (i,j) entry is the (j,i) cofactor. We have

which encodes the rule for expansion of the determinant of M by any the cofactors of any row or column. This expression shows that if det M is invertible, then M is invertible and the matrix inverse is determined as

Example

Consider the following example matrix,

Its minors are the determinants (bars indicate a determinant):

The adjugate matrix of M is

and the inverse matrix is

Indeed,

and the other matrix elements of the product follow likewise.

References