Cofactor (mathematics): Difference between revisions
imported>Chris Day No edit summary |
mNo edit summary |
||
(2 intermediate revisions by one other user not shown) | |||
Line 14: | Line 14: | ||
:<math>M^{-1} = (\det M)^{-1} \mathop{\mbox{adj}} M . \,</math> | :<math>M^{-1} = (\det M)^{-1} \mathop{\mbox{adj}} M . \,</math> | ||
==Example== | |||
Consider the following example matrix, | |||
:<math> | |||
M = \begin{pmatrix} | |||
a_1 & a_2 & a_3 \\ | |||
b_1 & b_2 & b_3 \\ | |||
c_1 & c_2 & c_3 \\ | |||
\end{pmatrix}. | |||
</math> | |||
Its minors are the determinants (bars indicate a determinant): | |||
:<math> | |||
M_{11} = | |||
\begin{vmatrix} | |||
b_2 & b_3 \\ | |||
c_2 & c_3 \\ | |||
\end{vmatrix}\quad | |||
M_{12} = | |||
\begin{vmatrix} | |||
b_1 & b_3 \\ | |||
c_1 & c_3 \\ | |||
\end{vmatrix} \quad | |||
M_{13} = | |||
\begin{vmatrix} | |||
b_1 & b_2 \\ | |||
c_1 & c_2 \\ | |||
\end{vmatrix} \quad | |||
M_{21} = | |||
\begin{vmatrix} | |||
a_2 & a_3 \\ | |||
c_2 & c_3 \\ | |||
\end{vmatrix} \quad | |||
M_{22} = | |||
\begin{vmatrix} | |||
a_1 & a_3 \\ | |||
c_1 & c_3 \\ | |||
\end{vmatrix} \quad | |||
</math> | |||
:<math> | |||
M_{23} = | |||
\begin{vmatrix} | |||
a_1 & a_2 \\ | |||
c_1 & c_2 \\ | |||
\end{vmatrix}\quad | |||
M_{31} = | |||
\begin{vmatrix} | |||
a_2 & a_3 \\ | |||
b_2 & b_3 \\ | |||
\end{vmatrix} \quad | |||
M_{32} = | |||
\begin{vmatrix} | |||
a_1 & a_3 \\ | |||
b_1 & b_3 \\ | |||
\end{vmatrix} \quad | |||
M_{33} = | |||
\begin{vmatrix} | |||
a_1 & a_2 \\ | |||
b_1 & b_2 \\ | |||
\end{vmatrix} \quad | |||
</math> | |||
The adjugate matrix of ''M'' is | |||
:<math> | |||
\mathrm{adj}M = A = | |||
\begin{pmatrix} | |||
M_{11} & -M_{21} & M_{31} \\ | |||
-M_{12} & M_{22} & -M_{32} \\ | |||
M_{13} & -M_{23} & M_{33} \\ | |||
\end{pmatrix}, | |||
</math> | |||
and the inverse matrix is | |||
:<math> | |||
M^{-1} = |M|^{-1} A\, . | |||
</math> | |||
Indeed, | |||
:<math> | |||
\begin{align} | |||
\left( M\; M^{-1}\right)_{11} & = |M|^{-1}\left( a_1 M_{11}- a_2 M_{12} + a_3 M_{13}\right) = \frac{|M|}{|M|} = 1 \\ | |||
\left( M\; M^{-1}\right)_{21} & = |M|^{-1}\left( b_1 M_{11}- b_2 M_{12} + b_3 M_{13}\right) | |||
=|M|^{-1}\left[ b_1(b_2c_3-b_3c_2) - b_2(b_1c_3-b_3c_1) + b_3(b_1c_2-b_2c_1)\right] = 0 ,\\ | |||
\end{align} | |||
</math> | |||
and the other matrix elements of the product follow likewise. | |||
==References== | ==References== | ||
* {{cite book | author=C.W. Norman | title=Undergraduate Algebra: A first course | publisher=[[Oxford University Press]] | year=1986 | isbn=0-19-853248-2 | pages=306,310,315 }} | * {{cite book | author=C.W. Norman | title=Undergraduate Algebra: A first course | publisher=[[Oxford University Press]] | year=1986 | isbn=0-19-853248-2 | pages=306,310,315 }}[[Category:Suggestion Bot Tag]] |
Latest revision as of 06:01, 30 July 2024
In mathematics, a cofactor is a component of a matrix computation of the matrix determinant.
Let M be a square matrix of size n. The (i,j) minor refers to the determinant of the (n-1)×(n-1) submatrix Mi,j formed by deleting the i-th row and j-th column from M (or sometimes just to the submatrix Mi,j itself). The corresponding cofactor is the signed determinant
The adjugate matrix adj M is the square matrix whose (i,j) entry is the (j,i) cofactor. We have
which encodes the rule for expansion of the determinant of M by any the cofactors of any row or column. This expression shows that if det M is invertible, then M is invertible and the matrix inverse is determined as
Example
Consider the following example matrix,
Its minors are the determinants (bars indicate a determinant):
The adjugate matrix of M is
and the inverse matrix is
Indeed,
and the other matrix elements of the product follow likewise.
References
- C.W. Norman (1986). Undergraduate Algebra: A first course. Oxford University Press, 306,310,315. ISBN 0-19-853248-2.