Quotient topology: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Bruce M. Tindall
mNo edit summary
mNo edit summary
 
Line 9: Line 9:
* {{cite book | author=Wolfgang Franz | title=General Topology | publisher=Harrap | year=1967 | pages=56 }}
* {{cite book | author=Wolfgang Franz | title=General Topology | publisher=Harrap | year=1967 | pages=56 }}
* {{cite book | author=J.L. Kelley | authorlink=John L. Kelley | title=General topology | publisher=van Nostrand | year= 1955 | pages=94-99 }}
* {{cite book | author=J.L. Kelley | authorlink=John L. Kelley | title=General topology | publisher=van Nostrand | year= 1955 | pages=94-99 }}
* {{cite book | author=Lynn Arthur Steen | authorlink=Lynn Arthur Steen | coauthors= J. Arthur Seebach jr | title=[[Counterexamples in Topology]] | year=1978 | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=0-387-90312-7 | pages=9 }}
* {{cite book | author=Lynn Arthur Steen | authorlink=Lynn Arthur Steen | coauthors= J. Arthur Seebach jr | title=[[Counterexamples in Topology]] | year=1978 | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=0-387-90312-7 | pages=9 }}[[Category:Suggestion Bot Tag]]

Latest revision as of 11:00, 9 October 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In general topology, the quotient topology, or identification topology is defined on the image of a topological space under a function.

Let be a topological space, and q a surjective function from X onto a set Y. The quotient topology on Y has as open sets those subsets of such that the pre-image .

The quotient topology has the universal property that it is the finest topology such that q is a continuous map.

References