Stress and appetite: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Nancy Sabatier
mNo edit summary
 
(96 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{CZ:(U00984) Appetite and Obesity, University of Edinburgh 2010/EZnotice}}
{{subpages}}
{{subpages}}


Although [[stress]] is often thought of as those social and workplace pressures of modern living that can lead to ill health, stress can be defined as ''anything'' that is potentially damaging to the internal [[homeostasis]] of an organism. Stressors may be either emotional and physical. Emotional stressors can be anything from a novel environment to potential embarrassment; they involve the ''perception'' of the stimuli as being 'stressful' and are processed by the limbic forebrain. On the other hand, physical stressors, esuch as an acute infection or a sudden change in temperature, pose an immediate threat and are processed quickly by the caudal brainstem.


The stress response involves activation of the [[hypothalamic-pituitary-adrenal]] (HPA) axis, resulting in heightened vigilance, enhanced cognition and arousal of the [[autonomic nervous system]]. These responses help to protect the body and the brain from harmful effects of the stress stimuli. <ref>Habib KE ''et al.'' (2001) Neuroendocrinology of stress ''Endocrinology and Metabolic Clincs of North America'' 30:695-728 PMID 11571937</ref>


Activation of the HPA axis triggers a cascade which ultimately leads to the secretion of the [[glucocorticoid]] hormone [[cortisol]] from the [[adrenal cortex]]. Cortisol acts on many cells to influence gene transcription and hence protein synthesis, and it also has direct membrane effects on some cells.


Begin your article with a brief overview of the scope of the article on [[interest group]]. Include the article name in '''bold''' in the first sentence.<ref>See the "Writing an Encyclopedia Article" handout for more details.</ref>
'''The HPA axis'''
{{Image|Holly's_JPEG_Diagram.JPG|right|300px|}}
The HPA axis is comprised of the [[hypothalamus]], the [[pituitary]] and the [[adrenal gland]]. The hypothalamus is the control centre for most of the hormonal systems in the body. In response to a stressor, be it psychological or physiological, [[corticotropin-releasing factor]] (CRF) is secreted. CRF is a peptide hormone which is synthesised by neuroendocrine neurones in the [[paraventricular nucleus]] (PVN) of the hypothalamus and released from the [[median eminence]] into capillaries that carry it to the pituitary gland (the hypothalamo-hypophysial portal vessels). There, CRF triggers secretion of [[adrenocorticotrophic hormone]] (ACTH). In turn, ACTH acts on the adrenal glands to stimulate the production of [[glucocorticoid]] hormones, of which [[cortisol]] is the main one in humans. Cortisol release triggers negative feedback to the hypothalamus and anterior pituitary, resulting in a fall in circulating ACTH, and subsequently a fall in glucocorticoid production. Cortisol also has metabolic effects which facilitate a return to [[homeostasis]].


Remember you are writing an encyclopedia article; it is meant to be readable by a wide audience, and so you will need to explain some things clearly, without using unneccessary jargon. But you don't need to explain everything - you can '''link''' specialist terms to other articles about them - for example [[adipocyte]] or [[leptin]] simply by enclosing the word in double square brackets.  
==Neural mechanisms of appetite control==
{{Image|Citizendium figure 2.jpg|right|250px|  The basic neural control of appetite, with emphasis on the PVN and how it relates to the HPA axis. Green indicates anorexigenic pathways/neurons and red indicates orexigenic pathways.}}


You can write your article directly onto the wiki- but at first you'll find it easier to write it in Word and copy and paste it onto the wiki.
Several peptides circulating in the blood inform the brain about the body’s nutritional status.  [[Insulin]] and [[leptin]], (which both suppress appetite) and [[ghrelin]] (which induces appetite) all can cross the blood-brain barrier, and one important site of action is at the [[arcuate nucleus]]. In the arcuate nucleus, some neurones produce substances which induce feeding (''orexigenic'') while others produce substances that suppress feeding (''anorexigenic''). The orexigenic neurons in the arcuate mucleus co-express two neuropeptides: [[neuropeptide Y]] (NPY), and [[Agouti-related peptide]] (AgRP), and these neurones are inhibited by  leptin. Conversely, leptin excitates  anorexigenic neurons  that express [[pro-opiomelanocortin]] (POMC) triggering the release of [[alpha-MSH]], which acts at MC4 receptors to suppress feeding/hunger. AgRP is an inverse agonist at the MC4 receptor, thus increasing NPY/AgRP neurons orexigenic effect <ref>Schwartz M ''et al.'' (2000) Central nervous system control of food intake ''Nature'' 404:661-71 PMID 10766253</ref>


Construct your article in sections and subsections, with headings and subheadings like this:
Appetite-regulating neurons of the arcuate nucleus project to many other parts of the hypothalamus, including to the [[lateral hypothalamus]] (LH), and the [[paraventricular nucleus]] (PVN). PVN stimulation causes inhibition of eating, whilst LH stimulation has the opposite effect. It is in the PVN that the main activator of the HPA axis - [[corticotropin-releasing hormone]] (CRH) - is synthesised. NPY neurons have abundant projections to the PVN, and due to their close proximity to CRH cell bodies, NPY has a stimulatory effect on CRF release.<ref>Dimitrov EL ''et al.'' (2006) Involvement of neuropeptide Y Y1 receptors in the regulation of neuroendocrine corticotropin-releasing hormone neuronal activity ''Endocrinology'' 148:3666-73</ref>


==Title of Part 1==
The key area of connection between the HPA axis and regulation of feeding is the PVN. Here, the innervation by NPY neurons influences CRF synthesis. CRF inhibits NPY neurones, thus initially CRF is anorexigenic, but glucocorticoids feed back to the brain to inhibit CRF expression. With sustained activation of the HPA axis, there is less CRF inhibition of NPY neurones, resulting in a greater orexigenic drive.<ref>Cavagnini F ''et al.'' (2000) Glucocorticoids and neuroendocrine function ''Int J Obesity'' 24: Suppl 2, s77-9 PMID 10997615</ref>
===Title of Subpart 1===
===Title of Subpart 2===
==Introduction to the neural mechanisms of appetite control and the interconnections to the HPA axis==


==Acute Stress and Appetite==


In the paragraph above we were introduced to the HPA axis and what it entails. This section aims to give a general understanding to how the brain is involved in regulating appetite, and how it is connected to the HPA axis to allow for stress to have an impact on appetite, which will be discussed in greater detail further along.
Stress affects every body system and contributes to many contemporary health problems, including obesity.<ref> Habhab S ''et al.'' (2009) The relationship between
stress, dietary restraint and food preference in women ''Appetite'' 52:437-44 </ref>


In light of the current obesity epidemic there has been a great deal of research gone into trying to figure out exactly what causes an obese person to over-eat, or store more energy, compared with a normal weight person. And recent years have seen a great deal of light shed on the neural mechanisms of appetite control. A full account of the control of appetite and its areas in the brain are beyond the scope of this article, but this section aims to highlight the key features so that the connection between stress and appetite can be made.
Stress can be put into two broad categories: acute stress (short term) and chronic stress (stressors occur regulary).  We respond to acute stress sometimes by overeating, and sometimes by under-eating, and this may be linked to the particular type of stressor. <ref name=Torres07> Torres SJ,Nowson CA (2007) Relationship between stress, eating behaviour and obesity ''Nutrition'' 23:887-94 </ref>


There are several peptides circulating in our bodies which inform the brain of the body’s nutritional status. These include [[insulin]] (acts to suppress appetite), [[leptin]] (acts to suppress appetite) and [[ghrelin]] (acts to induce appetite) which are able to cross the blood-brain barrier and enter the hypothalamus via the Arcuate Nucleus (ARC) where they have their effect (Schwartz et al, 2000). In ARC there are populations of neurons which produce and release substances which have either orexigenic effect (induce feeding) or anorexigeninc effect (suppress feeding). The orexigenic neurons, which signal hunger, or a negative energy state, are Neuropeptide Y (NPY)/Agouti-related Peptide (AgRP). These are inhibited by increased levels of insulin and leptin, which demonstrates that insulin and leptin act as appetite inhibitors. However, increasing levels of insulin and leptin have excitatory effects on another type of neuron, the anorexigenic peptide releasing neuron Pro-opiomelanocortin (POMC) which releases pro-opiomelanocortin, which is cleaved into melanocortins. Key here is alpha-MSH, a potent anorexigenic molecule, which acts on the MC4 receptor. An additional feature of the orexigenic pathway is that AgRP antagonises MC4, thus increasing NPY/AgRP neurons orexigenic power (Schwartz et al., 2000).
'''HPA Axis – ‘Uncontrollable Stress’'''


Rodent studies have illustrated a greater caloric intake during the recovery period from a novel stressor.  An ‘uncontrollable stressor’ can lead to the activation of the HPA axis resulting in the immediate release of CRH. This stimulates the release of cortisol (corticosterone in rodents). <ref name=Torres07/>  However, it is not known how cortisol triggers over-eating; studies have shown that there is no direct effect of cortisol but it may influence other factors such as leptin, NPY or certain cytokines which have a more direct effect on eating. <ref> Sapolsky R (1998) Why Zebras don't get ulcers; An Updated Guide to Stress, Stress-related Diseases and Coping. ''Freeman and Co'' 76-79 </ref>


Neurons from the ARC extend to other parts of the hypothalamus, such as to the Lateral Hypothalamus (LH), and the Paraventricular hypothalamus (PVN) and it is here the second-order signalling is postulated to take place. PVN stimulation causes inhibition of eating, whilst LH stimulation has the opposite effect. (Schwartsz et al, 2000). It is in the PVN we see the interconnection between feeding control and the HPA (stress) axis and it is here where the main activator of the HPA axis, Corticotropin-releasing factor (CRF), is synthesised. It has been demonstrated that NPY neurons are abundant here, and that they are in close proximity to CRF cell bodies (Demitrov et al, 2007). (Demitrov et al, (2007), also showed that NPY had a stimulatory effect on CRF, indicating that hunger can cause stress, but this will not be discussed here).
'''Sympathetic-Pituitary-Adrenal Axis – ‘Controllable Stress’'''


{{Image|Citizendium figure 2.jpg|right|250px| Green indicates anorexigenic pathways/neurons and red indicates orexigenic pathways. This figure represents the basic neural mechanisms of appetite, with emphasis on the PVN and how it relates to the HPA axis}}
Several studies have shown a ''suppression'' of eating in response to acute stress. In certain situations, sometimes termed ‘controllable’ stressors, the ‘Fight or Flight’ response is activated rather than the HPA axis. This mechanism, caused by the release of catecholamines (adrenaline and noradrenaline) from the adrenal glands, causes a range of physiological and behavioural changes to allow the individual to cope with the situation.  One such change is a reduction in food intake through a slowed gastric emptying and shunting of the blood vessels to the gastrointestinal tract to allow the muscles an increased blood supply. <ref name=Torres07/>


So as stated above, the key area of connection between the HPA axis and regulation of feeding is the PVN. Here there are NPY neurons (Orexigenic) and CRF synthesis (Activator of the HPA axis) which seem to act on each other in a classic feedback loop. CRF inhibits NPY thus initially being anorexigenic, however, once it has activated the HPA axis and glucocorticoids (GCs) are produced which then feed back to the brain and inhibit CRF, this inhibition is blocked, and feeding occurs. The more GCs present in the body (ie sustained activation of the HPA axis) the greater the inhibition of the CRF inhibition on NPY, thus, GCs stimulate NPY resulting in an orexigenic drive. However, as said, GCs inhibit CRF release which downstream will stop the release of GCs, thus completing the feedback loop (Cavagnini et al, 2000). Figure 2.1 summarizes the neural mechanisms of appetite control and how they relate to the HPA axis.


{{Image|Picture.jpg|right|350px|Image Caption}}


The control of appetite is immensely complex and this section only offers a brief overview (please see references for more detail). As has been described, there are several mechanisms in which appetite and stress are related to each other, and the significance of this will be discussed further along. The aim behind most research done in this field is to offer a solution to the growing morbidity of our generation as a result of obesity. Stress-induced eating has been shown to play a part in the obesity epidemic and it is the main objective of this paper to discuss the impact of stress on eating.
==Chronic Stress==
Chronic stress is the brain’s response to unpleasant events over a long time (more than 24 hours). Examples of chronic stress include job pressures or mental health diseases. While acute stress results in an acute increase in ACTH and glucocorticoid secretion followed by a decrease, chronic stress is associated with a sustained increase in glucocorticoid production, that is associated with a blunting of the normal circadian variation in glucocorticoid production. The effects of chronic stress on the hypothalamus include an inportant change in the CRF neurones of the PVN; these show a markedly increased expression of [[vasopressin]] mRNA - their major secretory product changes from being mainly CRF to being mainly vasopressin. Vasopressin, like CRF is a secretagogue for ACTH; on its own it is less potent that CRF, but when vasopressin and CRF are present together they have powerfully synergistic effects on ACTH secretion.


Elsewhere in the brain the chronically elevated glucocorticoids have important effects on the [[hippocampus]], and these are thought to underlie the effects of stress on cognitive function. There is also increased expression of CRF mRNA in the central amygdala, which enables the expression of the “Chronic stress-response network”. This results in an increase in ACTH and therefore corticosterone secretion. There is also an increase in glutamate secretion by the paraventricular nucleus of the thalamus. These structures were identified using c-Fos immunoreactive cells comparisons which were higher for chronically stressed rats than controls.


----
There are other main effects of chronically high concentration of glucocorticoids <ref> Dallman MF ''et al.'' (2010) Chronic stress and obesity: a new view of ‘comfort food’  ''Proc Natl Acad Sci'' 100:11696–701</ref>. High levels of glucocorticoid activate mechanisms of coping such as increasing the stimulating of pleasurable/compulsive activities such as eating sugary foods and fats. An example of this is the urge to consume “comfort foods”. The combination of “comfort foods”, high insulin levels and high glucocorticoid  levels increases abdominal fat depots. This can inhibit CRF mRNA expression in hypothalamic neurons and reduce HPA activity. This increased ingestion of “comfort foods” such as fatty and high sugar content foods and increased abdominal fat are strongly associated with obesity.


Chronic stress can also lead to an overall decrease in the HPA axis’ ability to control hormone levels.


'''Why do you reach for that extra double chocolate chip cookie after a stressful day?'''
In rats, severe chronic stress results in reduced intake of food. Moderate chronic stress also resultsin reduced food intake. It was shown that as CRF increases, there is a reduction in food ingestion and hence in body weight.


Stress is known to affect every body system and contributes to many of the negative health behaviours which impact todays’ society, including cardiovascular disease, diabetes and hypertension. With obesity becoming the world-wide epidemic which underlies many of these life-threatening diseases, many researchers have chosen to study the connection between novel stressors and an individuals eating behaviour, for example amount of food eaten and choice of food.
Elevated glucocorticoids of exogenous or endogenous nature for extended periods of time can lead to [[Cushing’s syndrome]].  Experiments on rats suggest that the effects of an increase in corticosterone leads to increase in ingestion of foods with high fat and sugar contents. This causes systems such as upper body obesity and increased neck and arm fat. As well as Cushing’s syndrome, there are a variety of other diseases that may be caused including hypertension, type 2 diabetes and cardiovascular diseases.


Both human and rodent studies into this area have illustrated a greater caloric intake after exposure to a novel lab stressor.   Quick run-down of mechanisms behind this.
==The HPA axis in Relation to Available Fat==
The HPA axis influences the storage and distribution of fat around the body. The situation of fat deposits was compared in pre-menopausal women, and divided into ‘central’ and ‘peripheral’ fat stores. Findings confirmed the relative levels of cortisol influenced the fat distribution, with lower cortisol binding globulin levels leading to increased cortisol and a higher central fat location. The waist-hip ratio of the women was correlated with glucocorticoid effects brought on by increased stress: cortisol production increases most when food is consumed by subjects with ‘central obesity’, rather than ‘peripheral’ fat stores.


Paragraph on why you choose sweeter / fatty foods after acute stress
Glucocorticoid sensitivity varies between males and females. There are also different interaction levels between the glucocorticoids and the sex steroids. Androgens have agonistic effects with glucocorticoids, while estrogens have antagonistic effects. Females with higher sensitivity to glucocorticoids may develop more central fat adiposity.


==About References==
Adipose tissues secrete various factors that influence the homeostasis and balance of energy consumption and use. Leptin is secreted in proportion to the available fat stores and can directly inhibit glucocorticoid secretion. The mechanism of the feedback loop involves the HPA axis, and when factors such as stress levels, or overeating occur; the substrates for the mechanism could change- altering the end product.
'''To insert references and/or footnotes in an article''', put the material you want in the reference or footnote between <nowiki> <ref> and </ref></nowiki>, like this:


<nowiki><ref>Person A ''et al.''(2010) The perfect reference for subpart 1 ''J Neuroendocrinol'' 36:36-52</ref> <ref>Author A, Author B (2009) Another perfect reference  ''J Neuroendocrinol'' 25:262-9</ref></nowiki>.
== The psychology behind the link between stress and eating ==
Stress can either cause under- or over-eating.  Most people change their eating patterns in stressful situations, and someone who is under extreme pressure at work is more likely to choose to eat food high in sugar and fat, which in the long term could lead to weight gain. Similarly, one study demonstrated that people in a sad state were more inclined to eat high sugar and fat food, whereas people who ate during a happy state were more likely to eat healthier food such as dried fruit. It is also thought that people who are already overweight or obese put on even more weight when they are under stress.


Look at the reference list below to see how this will look.<ref>Person A ''et al.'' (2010) The perfect reference for subpart 1 ''J Neuroendocrinol'' 36:36-52</ref> <ref>Author A, Author B (2009) Another perfect reference  ''J Neuroendocrinol'' 25:262-9</ref>
Glucocorticoids play a major role in eating behaviours and also in learning, memory and habit formation.  Stress-induced increases in glucocorticoid secretion have an intensifying effect on emotions and motivation and it also appears to increase calorie intake. As glucocorticoids increase, so does insulin secretion. Insulin is thought to have a role in the selection of food, whilst glucocorticoids increase the motivation for choosing a particular food.


If there are more than two authors just put the first author followed by ''et al.'' (Person A ''at al.'' (2010) etc.)
There is a relationship between individuals who are feeling stressed before eating and then feeling better after they have eaten highly palatable foods. Infrequent eating of pleasurable foods when under stress will not lead to obesity but eating pleasurable foods more often will develop habits to try to relieve the stress and in the long term this can lead to weight gain and obesity.
 
 
Select your references carefully - make sure they are cited accurately, and pay attention to the precise formatting style of the references. Your references should be available on PubMed and so will have a PubMed number. (for example PMID: 17011504) Writing this without the colon, (i.e. just writing PMID 17011504) will automatically insert a link to the abstract on PubMed (see the reference to Johnsone ''et al.'' in the list.)
<ref>Johnstone LE ''et al.'' (2006)Neuronal activation in the hypothalamus and brainstem during feeding in rats ''Cell Metab'' 2006 4:313-21. PMID 17011504</ref>
 
Use references sparingly; there's no need to reference every single point, and often a good review will cover several points. However sometimes you will need to use the same reference more than once.
 
 
'''How to write the same reference twice:'''
 
Reference: Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. ''Psychopharmacology'' 191:391–431 PMID 17072591
 
First time:<nowiki>
<ref name=Berridge07>Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. ''Psychopharmacology'' 191:391–431 PMID 17072591
</ref></nowiki>
 
Second time:<nowiki><ref name=Berridge07/></nowiki>
 
This will appear like this the first time <ref name=Berridge07>Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. ''Psychopharmacology'' 191:391–431 PMID 17072591
</ref> and like this the second time <ref name=Berridge07/>
 
==Figures and Diagrams==
{{Image|Adipocyte.png|right|300px|}}
You can also insert diagrams or photographs (to Upload files [[Cz:Upload]])). These '''must''' be your own original work - and you will therefore be the copyright holder; of course they may be based on or adapted from diagrams produced by others - in which case this must be declared clearly, and the source of the orinal idea must be cited. When you insert a figure or diagram into your article you will be asked to fill out a form in which you declare that you are the copyright holder and that you are willing to allow your work to be freely used by others - choose the "Release to the Public Domain" option when you come to that page of the form.
 
 
When you upload your file, give it a short descriptive name, like "Adipocyte.png". Then, if you type <nowiki> {{Image|Adipocyte.png|right|300px|}} </nowiki> in your article, the image will appear on the right hand side.


==References==
==References==
<references/>
{{reflist | 2}}[[Category:Suggestion Bot Tag]]

Latest revision as of 16:01, 22 October 2024

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Although stress is often thought of as those social and workplace pressures of modern living that can lead to ill health, stress can be defined as anything that is potentially damaging to the internal homeostasis of an organism. Stressors may be either emotional and physical. Emotional stressors can be anything from a novel environment to potential embarrassment; they involve the perception of the stimuli as being 'stressful' and are processed by the limbic forebrain. On the other hand, physical stressors, esuch as an acute infection or a sudden change in temperature, pose an immediate threat and are processed quickly by the caudal brainstem.

The stress response involves activation of the hypothalamic-pituitary-adrenal (HPA) axis, resulting in heightened vigilance, enhanced cognition and arousal of the autonomic nervous system. These responses help to protect the body and the brain from harmful effects of the stress stimuli. [1]

Activation of the HPA axis triggers a cascade which ultimately leads to the secretion of the glucocorticoid hormone cortisol from the adrenal cortex. Cortisol acts on many cells to influence gene transcription and hence protein synthesis, and it also has direct membrane effects on some cells.

The HPA axis

Holly's JPEG Diagram.JPG

The HPA axis is comprised of the hypothalamus, the pituitary and the adrenal gland. The hypothalamus is the control centre for most of the hormonal systems in the body. In response to a stressor, be it psychological or physiological, corticotropin-releasing factor (CRF) is secreted. CRF is a peptide hormone which is synthesised by neuroendocrine neurones in the paraventricular nucleus (PVN) of the hypothalamus and released from the median eminence into capillaries that carry it to the pituitary gland (the hypothalamo-hypophysial portal vessels). There, CRF triggers secretion of adrenocorticotrophic hormone (ACTH). In turn, ACTH acts on the adrenal glands to stimulate the production of glucocorticoid hormones, of which cortisol is the main one in humans. Cortisol release triggers negative feedback to the hypothalamus and anterior pituitary, resulting in a fall in circulating ACTH, and subsequently a fall in glucocorticoid production. Cortisol also has metabolic effects which facilitate a return to homeostasis.

Neural mechanisms of appetite control

The basic neural control of appetite, with emphasis on the PVN and how it relates to the HPA axis. Green indicates anorexigenic pathways/neurons and red indicates orexigenic pathways.

Several peptides circulating in the blood inform the brain about the body’s nutritional status. Insulin and leptin, (which both suppress appetite) and ghrelin (which induces appetite) all can cross the blood-brain barrier, and one important site of action is at the arcuate nucleus. In the arcuate nucleus, some neurones produce substances which induce feeding (orexigenic) while others produce substances that suppress feeding (anorexigenic). The orexigenic neurons in the arcuate mucleus co-express two neuropeptides: neuropeptide Y (NPY), and Agouti-related peptide (AgRP), and these neurones are inhibited by leptin. Conversely, leptin excitates anorexigenic neurons that express pro-opiomelanocortin (POMC) triggering the release of alpha-MSH, which acts at MC4 receptors to suppress feeding/hunger. AgRP is an inverse agonist at the MC4 receptor, thus increasing NPY/AgRP neurons orexigenic effect [2]

Appetite-regulating neurons of the arcuate nucleus project to many other parts of the hypothalamus, including to the lateral hypothalamus (LH), and the paraventricular nucleus (PVN). PVN stimulation causes inhibition of eating, whilst LH stimulation has the opposite effect. It is in the PVN that the main activator of the HPA axis - corticotropin-releasing hormone (CRH) - is synthesised. NPY neurons have abundant projections to the PVN, and due to their close proximity to CRH cell bodies, NPY has a stimulatory effect on CRF release.[3]

The key area of connection between the HPA axis and regulation of feeding is the PVN. Here, the innervation by NPY neurons influences CRF synthesis. CRF inhibits NPY neurones, thus initially CRF is anorexigenic, but glucocorticoids feed back to the brain to inhibit CRF expression. With sustained activation of the HPA axis, there is less CRF inhibition of NPY neurones, resulting in a greater orexigenic drive.[4]

Acute Stress and Appetite

Stress affects every body system and contributes to many contemporary health problems, including obesity.[5]

Stress can be put into two broad categories: acute stress (short term) and chronic stress (stressors occur regulary). We respond to acute stress sometimes by overeating, and sometimes by under-eating, and this may be linked to the particular type of stressor. [6]

HPA Axis – ‘Uncontrollable Stress’

Rodent studies have illustrated a greater caloric intake during the recovery period from a novel stressor. An ‘uncontrollable stressor’ can lead to the activation of the HPA axis resulting in the immediate release of CRH. This stimulates the release of cortisol (corticosterone in rodents). [6] However, it is not known how cortisol triggers over-eating; studies have shown that there is no direct effect of cortisol but it may influence other factors such as leptin, NPY or certain cytokines which have a more direct effect on eating. [7]

Sympathetic-Pituitary-Adrenal Axis – ‘Controllable Stress’

Several studies have shown a suppression of eating in response to acute stress. In certain situations, sometimes termed ‘controllable’ stressors, the ‘Fight or Flight’ response is activated rather than the HPA axis. This mechanism, caused by the release of catecholamines (adrenaline and noradrenaline) from the adrenal glands, causes a range of physiological and behavioural changes to allow the individual to cope with the situation. One such change is a reduction in food intake through a slowed gastric emptying and shunting of the blood vessels to the gastrointestinal tract to allow the muscles an increased blood supply. [6]


Image Caption

Chronic Stress

Chronic stress is the brain’s response to unpleasant events over a long time (more than 24 hours). Examples of chronic stress include job pressures or mental health diseases. While acute stress results in an acute increase in ACTH and glucocorticoid secretion followed by a decrease, chronic stress is associated with a sustained increase in glucocorticoid production, that is associated with a blunting of the normal circadian variation in glucocorticoid production. The effects of chronic stress on the hypothalamus include an inportant change in the CRF neurones of the PVN; these show a markedly increased expression of vasopressin mRNA - their major secretory product changes from being mainly CRF to being mainly vasopressin. Vasopressin, like CRF is a secretagogue for ACTH; on its own it is less potent that CRF, but when vasopressin and CRF are present together they have powerfully synergistic effects on ACTH secretion.

Elsewhere in the brain the chronically elevated glucocorticoids have important effects on the hippocampus, and these are thought to underlie the effects of stress on cognitive function. There is also increased expression of CRF mRNA in the central amygdala, which enables the expression of the “Chronic stress-response network”. This results in an increase in ACTH and therefore corticosterone secretion. There is also an increase in glutamate secretion by the paraventricular nucleus of the thalamus. These structures were identified using c-Fos immunoreactive cells comparisons which were higher for chronically stressed rats than controls.

There are other main effects of chronically high concentration of glucocorticoids [8]. High levels of glucocorticoid activate mechanisms of coping such as increasing the stimulating of pleasurable/compulsive activities such as eating sugary foods and fats. An example of this is the urge to consume “comfort foods”. The combination of “comfort foods”, high insulin levels and high glucocorticoid levels increases abdominal fat depots. This can inhibit CRF mRNA expression in hypothalamic neurons and reduce HPA activity. This increased ingestion of “comfort foods” such as fatty and high sugar content foods and increased abdominal fat are strongly associated with obesity.

Chronic stress can also lead to an overall decrease in the HPA axis’ ability to control hormone levels.

In rats, severe chronic stress results in reduced intake of food. Moderate chronic stress also resultsin reduced food intake. It was shown that as CRF increases, there is a reduction in food ingestion and hence in body weight.

Elevated glucocorticoids of exogenous or endogenous nature for extended periods of time can lead to Cushing’s syndrome. Experiments on rats suggest that the effects of an increase in corticosterone leads to increase in ingestion of foods with high fat and sugar contents. This causes systems such as upper body obesity and increased neck and arm fat. As well as Cushing’s syndrome, there are a variety of other diseases that may be caused including hypertension, type 2 diabetes and cardiovascular diseases.

The HPA axis in Relation to Available Fat

The HPA axis influences the storage and distribution of fat around the body. The situation of fat deposits was compared in pre-menopausal women, and divided into ‘central’ and ‘peripheral’ fat stores. Findings confirmed the relative levels of cortisol influenced the fat distribution, with lower cortisol binding globulin levels leading to increased cortisol and a higher central fat location. The waist-hip ratio of the women was correlated with glucocorticoid effects brought on by increased stress: cortisol production increases most when food is consumed by subjects with ‘central obesity’, rather than ‘peripheral’ fat stores.

Glucocorticoid sensitivity varies between males and females. There are also different interaction levels between the glucocorticoids and the sex steroids. Androgens have agonistic effects with glucocorticoids, while estrogens have antagonistic effects. Females with higher sensitivity to glucocorticoids may develop more central fat adiposity.

Adipose tissues secrete various factors that influence the homeostasis and balance of energy consumption and use. Leptin is secreted in proportion to the available fat stores and can directly inhibit glucocorticoid secretion. The mechanism of the feedback loop involves the HPA axis, and when factors such as stress levels, or overeating occur; the substrates for the mechanism could change- altering the end product.

The psychology behind the link between stress and eating

Stress can either cause under- or over-eating. Most people change their eating patterns in stressful situations, and someone who is under extreme pressure at work is more likely to choose to eat food high in sugar and fat, which in the long term could lead to weight gain. Similarly, one study demonstrated that people in a sad state were more inclined to eat high sugar and fat food, whereas people who ate during a happy state were more likely to eat healthier food such as dried fruit. It is also thought that people who are already overweight or obese put on even more weight when they are under stress.

Glucocorticoids play a major role in eating behaviours and also in learning, memory and habit formation. Stress-induced increases in glucocorticoid secretion have an intensifying effect on emotions and motivation and it also appears to increase calorie intake. As glucocorticoids increase, so does insulin secretion. Insulin is thought to have a role in the selection of food, whilst glucocorticoids increase the motivation for choosing a particular food.

There is a relationship between individuals who are feeling stressed before eating and then feeling better after they have eaten highly palatable foods. Infrequent eating of pleasurable foods when under stress will not lead to obesity but eating pleasurable foods more often will develop habits to try to relieve the stress and in the long term this can lead to weight gain and obesity.

References

  1. Habib KE et al. (2001) Neuroendocrinology of stress Endocrinology and Metabolic Clincs of North America 30:695-728 PMID 11571937
  2. Schwartz M et al. (2000) Central nervous system control of food intake Nature 404:661-71 PMID 10766253
  3. Dimitrov EL et al. (2006) Involvement of neuropeptide Y Y1 receptors in the regulation of neuroendocrine corticotropin-releasing hormone neuronal activity Endocrinology 148:3666-73
  4. Cavagnini F et al. (2000) Glucocorticoids and neuroendocrine function Int J Obesity 24: Suppl 2, s77-9 PMID 10997615
  5. Habhab S et al. (2009) The relationship between stress, dietary restraint and food preference in women Appetite 52:437-44
  6. 6.0 6.1 6.2 Torres SJ,Nowson CA (2007) Relationship between stress, eating behaviour and obesity Nutrition 23:887-94
  7. Sapolsky R (1998) Why Zebras don't get ulcers; An Updated Guide to Stress, Stress-related Diseases and Coping. Freeman and Co 76-79
  8. Dallman MF et al. (2010) Chronic stress and obesity: a new view of ‘comfort food’ Proc Natl Acad Sci 100:11696–701