Composting: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>David Laureys
No edit summary
imported>David Laureys
No edit summary
Line 14: Line 14:
After the active composting fase, there is a maturation period. During this period, the composting process goes on, but at a much slower rate. Due this slower rate, the oxygen consumption decreases, and the temperatures stay lower. While this process continues, the amount of humus increase, and nutrients (like nitrogen) are stored within stable organic compounds. This reduces the immediate availability of nutrients to the plants and allows them to be released at a more gradual rate. After the active composting phase, most nitrogen is readily available in the form of ammonium (NH<sub>4</sub><sup>+</sup>). Concentrated amounts of ammonium can cause damage to several plants. Some of the processes occur only at low temperatures or in well-decomposed organic matter, like this conversion (oxydation) of ammonium to nitrate (NO<sub>3</sub><sup>-</sup>), which is less harmful to plants. Because the composting process does not stop at a particular point, the process can go on till only "energy-exhausted" organics and inorganics remain. However, compost becomes relatively stable and useful long before this point. An immature compost continues to consume oxygen after application to the field and thereby reduces the availability of oxygen in the soil to the plant. An immature compost can also contain high levels of organic acids or have a high C/N ratio (carbon/nitrogen). This can cause competition between the plants that need the nitrogen for growth and the nitrogen needed for the stabilization of the organic matter.
After the active composting fase, there is a maturation period. During this period, the composting process goes on, but at a much slower rate. Due this slower rate, the oxygen consumption decreases, and the temperatures stay lower. While this process continues, the amount of humus increase, and nutrients (like nitrogen) are stored within stable organic compounds. This reduces the immediate availability of nutrients to the plants and allows them to be released at a more gradual rate. After the active composting phase, most nitrogen is readily available in the form of ammonium (NH<sub>4</sub><sup>+</sup>). Concentrated amounts of ammonium can cause damage to several plants. Some of the processes occur only at low temperatures or in well-decomposed organic matter, like this conversion (oxydation) of ammonium to nitrate (NO<sub>3</sub><sup>-</sup>), which is less harmful to plants. Because the composting process does not stop at a particular point, the process can go on till only "energy-exhausted" organics and inorganics remain. However, compost becomes relatively stable and useful long before this point. An immature compost continues to consume oxygen after application to the field and thereby reduces the availability of oxygen in the soil to the plant. An immature compost can also contain high levels of organic acids or have a high C/N ratio (carbon/nitrogen). This can cause competition between the plants that need the nitrogen for growth and the nitrogen needed for the stabilization of the organic matter.
Immature compost can thus cause damage to crops and plants. Compost is judged to be stable by characteristics such as C/N ratio, oxygen demand, temperature and odor.
Immature compost can thus cause damage to crops and plants. Compost is judged to be stable by characteristics such as C/N ratio, oxygen demand, temperature and odor.
Table: recommended conditions for rapid composting
 


{| class= "wikitable" style="text-align:left"
{| class= "wikitable" style="text-align:left"
|+Recommended conditions for rapid composting
  ! Condition
  ! Condition
  ! Reasonable range
  ! Reasonable range

Revision as of 13:09, 9 April 2007

Composting is the aerobic (=oxygen using) decomposition and stabilization of solid organic materials by aerobic organisms. This process can be done under controlled conditions (=optimal conditions and environmentally safe) but also occurs in almost every environment where solid organic materials are supplied with oxygen, moist and the right temperature. The created compost should be a stable and hygienic substance which is rich in humus en looks like soil.

Purpose

The purpose of the composting process is the removal of the biodegradable part of the organic materials, reducing volume, mass, particle size and humidity of the original waste. This process transforms the waste into a valuable soil conditioner that can be used for gardening and agricultural purposes. The biodegradable part consists of saccharides (glucose, fructose, lactose, sucrose, starch), proteins and most fats. In the case that there is no oxygen available, the composting process is impossible and an anaerobic digestion takes place. This causes production of several gases (methane, small amounts of hydrogen sulfide and hydrogen gas...), resulting in bad smells.

The conversion process

The active composting process takes place at the surface of the composting particles. Every particle consists of an anaerobic inner core, a partially aerobic layer below the particle surface, an outer aerobic surface layer and an aerobic liquid film surrounding the particle. The microbial community lives in the surrounding liquid layer, so while the composting proceeds, the particles shrink till the original raw materials are discernible. To stay alive, reproduce and regulate itself, every living being needs energy sources (light or oxido-reduction-reactions) and nutrient sources (carbon, nitrogen, minerals, water...). In this case the energy (in the form of electrons from oxido-reduction-reactions) is coming from the oxidation of organic matter with oxygen (chemo-organotrophic), and the carbon source is the organic matter (heterotrophic), so this organisms are called hetero-chemo-organotrophics. The micro-organisms produce enzymes to do the job, these are proteins acting as a catalyst in the oxydation of the organic waste and in producing microbial biomass. This is the overall conversion during the composting:

C6H12O6 + 6O2 => 6CO2 + 6H2O + heat + new microbial biomass

Since the release of heat is directly related to the microbial activity, temperature can be used as an important process indicator. During the initial days, the readily degradable compounds are metabolized and the temperature rises fast, depending on the conditions the temperature can rise well above 60°C. This high temperatures causes the weed seeds and pathogens to be killed, but also the desirable composting micro-organisms begin to die or at least slow down. Normally the temperature increases fast in the initial days up to 45-60°C, and stay in this interval for several weeks, this is the active composting phase. When the readily available compounds become depleted, the metabolization speed slows down and the temperature decreases slowly till ambient air temperature.

After the active composting fase, there is a maturation period. During this period, the composting process goes on, but at a much slower rate. Due this slower rate, the oxygen consumption decreases, and the temperatures stay lower. While this process continues, the amount of humus increase, and nutrients (like nitrogen) are stored within stable organic compounds. This reduces the immediate availability of nutrients to the plants and allows them to be released at a more gradual rate. After the active composting phase, most nitrogen is readily available in the form of ammonium (NH4+). Concentrated amounts of ammonium can cause damage to several plants. Some of the processes occur only at low temperatures or in well-decomposed organic matter, like this conversion (oxydation) of ammonium to nitrate (NO3-), which is less harmful to plants. Because the composting process does not stop at a particular point, the process can go on till only "energy-exhausted" organics and inorganics remain. However, compost becomes relatively stable and useful long before this point. An immature compost continues to consume oxygen after application to the field and thereby reduces the availability of oxygen in the soil to the plant. An immature compost can also contain high levels of organic acids or have a high C/N ratio (carbon/nitrogen). This can cause competition between the plants that need the nitrogen for growth and the nitrogen needed for the stabilization of the organic matter. Immature compost can thus cause damage to crops and plants. Compost is judged to be stable by characteristics such as C/N ratio, oxygen demand, temperature and odor.


Recommended conditions for rapid composting
Condition Reasonable range Preferred range
C/N ratio 20/1 - 40/1 25/1 - 30/1
Moisture content 40-60% 50-60%
Oxygen concentration >5% >>5%
Particle size (diameter in cm) 0.3-5 varies
pH 5.5-9.0 6.5-8.0
Temperature (°C) 40-65 50-60


Factors affecting the composting process

Organism active during composting

Process design