Octonions: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Andy Philpotts
No edit summary
 
imported>Aleksander Stos
m (typo)
Line 1: Line 1:
'''Octonions''' are a [[Commutativity|non-commutative]] extension of the [[Complex number|complex numbers]]. They were were first discovered by John Graves, a friend of Sir William Rowan Hamilton who first described the related [[Quaternions|quaternions]].  
'''Octonions''' are a [[Commutativity|non-commutative]] extension of the [[Complex number|complex numbers]]. They were were first discovered by John Graves, a friend of Sir William Rowan Hamilton who first described the related [[Quaternions|quaternions]].  
Although Hamilton offered to publicize Graves discovery, it took Arthur Cayley to rediscover and publish in 1845, for this reason octinions are also known as Cayley Numbers.
Although Hamilton offered to publicize Graves discovery, it took Arthur Cayley to rediscover and publish in 1845, for this reason octonions are also known as Cayley Numbers.


== Definition & basic operations ==
== Definition & basic operations ==

Revision as of 04:37, 5 October 2007

Octonions are a non-commutative extension of the complex numbers. They were were first discovered by John Graves, a friend of Sir William Rowan Hamilton who first described the related quaternions. Although Hamilton offered to publicize Graves discovery, it took Arthur Cayley to rediscover and publish in 1845, for this reason octonions are also known as Cayley Numbers.

Definition & basic operations

The octinions, , are a eight-dimensional normed division algebra over the real numbers.


Properties

Applications

References