Norm (mathematics): Difference between revisions
Jump to navigation
Jump to search
imported>Aleksander Stos m (Norm moved to Norm (mathematics): obvious, non?) |
imported>David E. Volk No edit summary |
||
Line 11: | Line 11: | ||
A norm on ''X'' also defines a [[metric space#Metric on a set|metric]] <math>d</math> on ''X'' as <math>d(x,y)=\|x-y\|</math>. Hence a normed space is also a [[metric space]]. | A norm on ''X'' also defines a [[metric space#Metric on a set|metric]] <math>d</math> on ''X'' as <math>d(x,y)=\|x-y\|</math>. Hence a normed space is also a [[metric space]]. | ||
[[Category:CZ Live]] | |||
[[Category:Mathematics Workgroup]] |
Revision as of 17:33, 8 December 2007
In mathematics, a norm is a function on a vector space that generalizes to vector spaces the notion of the distance from a point of a Euclidean space to the origin.
Formal definition of norm
Let X be a vector space over some subfield F of the complex numbers. Then a norm on X is any function having the following four properties:
- for all (positivity)
- if and only if x=0
- for all (triangular inequality)
- for all
A norm on X also defines a metric on X as . Hence a normed space is also a metric space.