Weil-étale cohomology: Difference between revisions
Jump to navigation
Jump to search
imported>Giovanni Antonio DiMatteo |
mNo edit summary |
||
Line 15: | Line 15: | ||
* Geisser, Thomas. ''Weil-Étale Cohomology over Finite Fields'' | * Geisser, Thomas. ''Weil-Étale Cohomology over Finite Fields'' | ||
* Geisser, Thomas. ''Motivic Weil-Étale Cohomology'' | * Geisser, Thomas. ''Motivic Weil-Étale Cohomology'' | ||
[[Category:Suggestion Bot Tag]] |
Latest revision as of 07:01, 7 November 2024
In (date), a new Grothendieck topology was introduced by S. Lichtenbaum, defined on the category of schemes of finite type over a finite field. Its construction bears the same relation to the étale topology as the Weil group does to the Galois group.
The Weil-étale site
Weil-étale sheaves and cohomology
The Lichtenbaum conjectures
It was conjectured that the Weil-étale cohomology groups could be used in computing values of zeta functions.
References
- Lichtenbaum, Stephen. (date) The Weil-Étale Topology, (preprint?).
- Lichtenbaum, Stephen. (2005) The Weil-Étale Topology for Number Rings, (preprint?).
- Geisser, Thomas. Weil-Étale Cohomology over Finite Fields
- Geisser, Thomas. Motivic Weil-Étale Cohomology