Kähler differentials: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Hendra I. Nurdin
m (Kähler differntials moved to Kähler differential: typo in article name, removed plural in "differentials")
imported>Joe Quick
m (subpages)
Line 1: Line 1:
{{subpages}}
==Definition==
==Definition==


Line 5: Line 6:
#<math>D(b+b')=D(b)+D(b')</math> for <math>b,b'\in B</math>
#<math>D(b+b')=D(b)+D(b')</math> for <math>b,b'\in B</math>
#<math>D(bb')=b'D(b)+bD(b')</math>
#<math>D(bb')=b'D(b)+bD(b')</math>
Observe that the set of all such maps <math>Der_A(B,M)</math> is a <math>B</math>-module. Moreover, <math>Der_A(B,-)</math> is a [[Category of functors|representable functor]]; we call the representative <math>\Omega_{B/A}</math> the module of Kähler differentials. That is, <math>\Omega_{B/A}</math> satisfies the following universal property:  
Observe that the set of all such maps <math>Der_A(B,M)</math> is a <math>B</math>-module. Moreover, <math>Der_A(B,-)</math> is a [[Category of functors|representable functor]]; we call the representative <math>\Omega_{B/A}</math> the module of Kähler differentials. That is, <math>\Omega_{B/A}</math> satisfies the following universal property:
 
 
[[Category:CZ Live]]
[[Category:Stub Articles]]
[[Category:Mathematics Workgroup]]

Revision as of 00:20, 22 December 2007

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Definition

Let be an algebra. An A differential of B into an -module is a map D:B\to M such that

  1. for all
  2. for

Observe that the set of all such maps is a -module. Moreover, is a representable functor; we call the representative the module of Kähler differentials. That is, satisfies the following universal property: