User:Milton Beychok/Sandbox: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Milton Beychok
No edit summary
imported>Milton Beychok
No edit summary
Line 3: Line 3:
An '''expansion turbine''', also referred to as a '''turboexpander''' or '''turbo-expander''', is a centrifugal or axial flow [[turbine]] through which a high [[pressure]] [[gas]] is expanded to produce work that is often used to drive a [[gas compressor]].   
An '''expansion turbine''', also referred to as a '''turboexpander''' or '''turbo-expander''', is a centrifugal or axial flow [[turbine]] through which a high [[pressure]] [[gas]] is expanded to produce work that is often used to drive a [[gas compressor]].   


Because work is extracted from the expanding high pressure gas, the expansion is an [[isentropic]] process (i.e., a constant [[entropy]] process) and the low pressure exhaust gas from the turbine is at a very low [[temperature]], as low as 200 K (-73 °C) or less. Expansion turbines are very widely used as sources of [[refrigeration]] in industrial processes such as the extraction of [[ethane]] and [[Natural gas processing|natural gas liquids]] (NGLs) from [[natural gas]],<ref>[http://freepatentsonline.com/US6915662.html Demethanzer]</ref> the [[liquefaction of gases]]<ref>[http://www.nzic.org.nz/ChemProcesses/production/1K.pdf BOC (NZ) publication]: use search function for keyword "expansion"</ref><ref>[http://www.hydrogen.energy.gov/pdfs/progress05/v_e_1_shimko.pdf US Department of Energy Hydrogen Program]</ref> and other low-temperature processes.
Because work is extracted from the expanding high pressure gas, the expansion is an [[isentropic]] process (i.e., a constant [[entropy]] process) and the low pressure exhaust gas from the turbine is at a very low [[temperature]], sometimes as low as -90 °C or less. Expansion turbines are very widely used as sources of [[refrigeration]] in industrial processes such as the extraction of [[ethane]] and [[Natural gas processing|natural gas liquids]] (NGLs) from [[natural gas]],<ref>[http://freepatentsonline.com/US6915662.html Demethanzer]</ref> the liquefaction of [[gases]] (such as [[oxygen]], [[nitrogen]], [[helium]], [[argon]] and [[krypton]])<ref>[http://www.nzic.org.nz/ChemProcesses/production/1K.pdf BOC (NZ) publication]: use search function for keyword "expansion"</ref><ref>[http://www.hydrogen.energy.gov/pdfs/progress05/v_e_1_shimko.pdf US Department of Energy Hydrogen Program]</ref> and other low-temperature processes.
 
In 1939, [[Pyotr Kapitza]] of [[Russia]] suggested the use of a centrifugal turbine for the isentropic expansion of gases to produce refrigeration. Since then, centrifugal expansion turbines have taken over almost 100 percent of the gas liquefaction and other low-temperature industrial requirements.


==Applications==
==Applications==
Line 38: Line 36:


==History==
==History==
In 1939, [[Pyotr Kapitza]] of [[Russia]] suggested the use of a centrifugal turbine for the isentropic expansion of gases to produce refrigeration. Since then, centrifugal expansion turbines have taken over almost 100 percent of the gas liquefaction and other low-temperature industrial requirements.


==References==
==References==
{{reflist}}
{{reflist}}

Revision as of 01:35, 10 July 2008

(PD) Image: MiltonBeychok
Fig. 1: Schematic diagram of an expansion turbine driving a compressor.

An expansion turbine, also referred to as a turboexpander or turbo-expander, is a centrifugal or axial flow turbine through which a high pressure gas is expanded to produce work that is often used to drive a gas compressor.

Because work is extracted from the expanding high pressure gas, the expansion is an isentropic process (i.e., a constant entropy process) and the low pressure exhaust gas from the turbine is at a very low temperature, sometimes as low as -90 °C or less. Expansion turbines are very widely used as sources of refrigeration in industrial processes such as the extraction of ethane and natural gas liquids (NGLs) from natural gas,[1] the liquefaction of gases (such as oxygen, nitrogen, helium, argon and krypton)[2][3] and other low-temperature processes.

Applications

© Image: John D. Wilkinson et al, U.S. Patent 6915662
Fig. 2: A schematic diagram of a demethanizer extracting hydrocarbon liquids from natural gas.

Extracting hydrocarbon liquids from natural gas

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(PD) Image: Milton Beychok
Fig. 3: A schematic diagram of the power recovery system in a fluid catalytic cracking unit.

Power recovery in fluid catalytic cracker

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Image: Joost J. Brasz, European patent EP0676600
Fig. 4: Schematic diagram of a refrigeration system using an expansion turbine and a compressor.

Refrigeration system

 
 
 
 
 
 
 
 
 
 
 
 
 



Power generation

History

In 1939, Pyotr Kapitza of Russia suggested the use of a centrifugal turbine for the isentropic expansion of gases to produce refrigeration. Since then, centrifugal expansion turbines have taken over almost 100 percent of the gas liquefaction and other low-temperature industrial requirements.

References