User:Milton Beychok/Sandbox: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Milton Beychok
No edit summary
imported>Milton Beychok
Line 10: Line 10:
numbers to an exponential power. A few numerical examples, using base-10 logarithms (to eight decimal places) will illustrate that simplicity.
numbers to an exponential power. A few numerical examples, using base-10 logarithms (to eight decimal places) will illustrate that simplicity.


<u>Example 1</u>: Calculate 112.76 × 3,085.31 by using <math>\log_b(xy) = \log_b(x) + \log_b(y):</math><BR><BR>
'''''Example 1:''''' Calculate 112.76 × 3,085.31 by using <math>\log_b(xy) = \log_b(x) + \log_b(y):</math><BR><BR>


:log<sub>10</sub>(112.76) + log<sub>10</sub>(3085.31 = 2.05215507 + 3.48929881 = 5.54145387
:log<sub>10</sub>(112.76) + log<sub>10</sub>(3085.31 = 2.05215507 + 3.48929881 = 5.54145387
Line 17: Line 17:
The answer would be 347,899.56 by using an electronic calculator.
The answer would be 347,899.56 by using an electronic calculator.


<u>Example 2</u>: Calculate 47.53 ÷ 860.22 by using <math>\log_b (x / y) = \log_b (x) - \log_b (y):</math><BR><BR>
'''''Example 2:''''' Calculate 47.53 ÷ 860.22 by using <math>\log_b (x / y) = \log_b (x) - \log_b (y):</math><BR><BR>


:log<sub>10</sub>(47.53) − log<sub>10</sub>(860.22) = 1.67696781 − 2.93460954 = −1.25764172
:log<sub>10</sub>(47.53) − log<sub>10</sub>(860.22) = 1.67696781 − 2.93460954 = −1.25764172
Line 24: Line 24:
The answer would be 0.05525233 by using an electronic calculator.
The answer would be 0.05525233 by using an electronic calculator.


<u>Example 3</u>: Calculate 963.64<sup>1/3</sup> using <math>\log_b (x^y)= y \log_b (x):</math><BR><BR>
'''''Example 3:''''' Calculate 963.64<sup>1/3</sup> using <math>\log_b (x^y)= y \log_b (x):</math><BR><BR>


:(1/3) × log<sub>10</sub>(963.64) = (1/3) × 2.98391482 = 0.99463827
:(1/3) × log<sub>10</sub>(963.64) = (1/3) × 2.98391482 = 0.99463827

Revision as of 13:32, 2 November 2008

The importance of logarithms

The development of electronic calculators and computers in the mid-1900's reduced the importance of logarithms for computations but not the importance of logarithmic functions. Thus, we should discuss the importance of logarithms before and after the advent of electronic calculators and computers.

Before the advent of calculators and computers

The operations of addition and subtraction are much easier to perform than are the operations of multiplication and division. Logarithms were characterized by Pierre-Simon Laplace, the French mathematician and astronomer, as "doubling the life of an astronomer". The German mathematician, Karl Friedrich Gauss, who also did work in physics and astronomy, is said to have memorized a table of logarithms to save the time required to look up a logarithm each time he needed one.[1]

The use of logarithms was widespread because of their relative simplicity compared to multiplication, division, or raising numbers numbers to an exponential power. A few numerical examples, using base-10 logarithms (to eight decimal places) will illustrate that simplicity.

Example 1: Calculate 112.76 × 3,085.31 by using

log10(112.76) + log10(3085.31 = 2.05215507 + 3.48929881 = 5.54145387
antilog10(5.54145387) = 347,899.55

The answer would be 347,899.56 by using an electronic calculator.

Example 2: Calculate 47.53 ÷ 860.22 by using

log10(47.53) − log10(860.22) = 1.67696781 − 2.93460954 = −1.25764172
antilog10(−1.25764172) = 0.05525233

The answer would be 0.05525233 by using an electronic calculator.

Example 3: Calculate 963.641/3 using

(1/3) × log10(963.64) = (1/3) × 2.98391482 = 0.99463827
antilog10 (0.99463827) = 9.87730064

The answer would be 9.87730064 by using an electronic calculator.

Note: The antilog of x is simply the logarithm base raised to the power of x which, in the above examples, is 10x.

After the advent of calculators and computers

  1. R.A. Rosenbaun and G.P. Johnson (1984). Calculus: Basic Concepts and Applications. Cambridge University Press. ISBN 0-521-25012-9.