Confidence interval: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Robert Badgett
imported>Robert Badgett
No edit summary
Line 1: Line 1:
{{subpages}}
{{subpages}}
The '''Confidence interval''' is a "range of values for a variable of interest, e.g., a rate, constructed so that this range has a specified probability of including the true value of the variable."<ref>{{MeSH}}</ref>
The '''Confidence interval''' (CI) is a "range of values for a variable of interest, e.g., a rate, constructed so that this range has a specified probability of including the true value of the variable."<ref>{{MeSH}}</ref>


In large samples, calculations for the confidence interval for rates and proportions may be based on the [[normal distribution]].<ref name="isbn0-471-26370-2">{{cite book |author=Fleiss, Joseph L. |title=Statistical methods for rates and proportions |publisher=Wiley |location=New York |year=1973 |pages=13 |isbn=0-471-26370-2 |oclc= |doi=}}</ref><ref name="isbn0-8138-1560-6">{{cite book |author=Cochran, William Cox; Snedecor, George W. |title=Statistical methods |publisher=Iowa State University Press |location=Ames |year=1980 |pages=118 |isbn=0-8138-1560-6 |oclc= |doi=}}</ref>
In large samples, calculations for the CI for rates and proportions may be based on the [[normal distribution]].<ref name="isbn0-471-26370-2">{{cite book |author=Fleiss, Joseph L. |title=Statistical methods for rates and proportions |publisher=Wiley |location=New York |year=1973 |pages=13 |isbn=0-471-26370-2 |oclc= |doi=}}</ref><ref name="isbn0-8138-1560-6">{{cite book |author=Cochran, William Cox; Snedecor, George W. |title=Statistical methods |publisher=Iowa State University Press |location=Ames |year=1980 |pages=118 |isbn=0-8138-1560-6 |oclc= |doi=}}</ref>
 
The equation using the normal distribution is:<ref name="pmid3082422">{{cite journal |author=Gardner MJ, Altman DG |title=Confidence intervals rather than P values: estimation rather than hypothesis testing |journal=Br Med J (Clin Res Ed) |volume=292 |issue=6522 |pages=746–50 |year=1986 |month=March |pmid=3082422 |doi= |url= |issn=}}</ref>
 
:<math>\mbox{CI lower limit} = \bar X - \mbox{Z} * \mbox{SE} \,\!</math>
 
:<math>\mbox{CI lower limit} = \bar X + \mbox{Z} * \mbox{SE} \,\!</math>
 
Where
:<math>\bar X = \mbox{sample mean}\,\!</math>
 
:<math>\mbox{Z} = 1.96\,(\mbox{if}\, \alpha = 0.05 \,\mbox{for}\,95%\,\mbox{confidence intervals})\,\!</math>
 
:<math>\mbox{Z} = 3.29\,(\mbox{if}\, \alpha = 0.001 \,\mbox{for}\,99.9%\,\mbox{confidence intervals})\,\!</math>
 
:<math>\mbox{SE} = \mbox{standard error} = \frac{\mbox{standard deviation}}{\sqrt{n}}</math>


For small samples, calculations should be made using the binomial distribution or the Poisson distribution.
For small samples, calculations should be made using the binomial distribution or the Poisson distribution.

Revision as of 11:43, 20 May 2008

This article is a stub and thus not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

The Confidence interval (CI) is a "range of values for a variable of interest, e.g., a rate, constructed so that this range has a specified probability of including the true value of the variable."[1]

In large samples, calculations for the CI for rates and proportions may be based on the normal distribution.[2][3]

The equation using the normal distribution is:[4]

Where

For small samples, calculations should be made using the binomial distribution or the Poisson distribution.

References

  1. Anonymous (2024), Confidence interval (English). Medical Subject Headings. U.S. National Library of Medicine.
  2. Fleiss, Joseph L. (1973). Statistical methods for rates and proportions. New York: Wiley, 13. ISBN 0-471-26370-2. 
  3. Cochran, William Cox; Snedecor, George W. (1980). Statistical methods. Ames: Iowa State University Press, 118. ISBN 0-8138-1560-6. 
  4. Gardner MJ, Altman DG (March 1986). "Confidence intervals rather than P values: estimation rather than hypothesis testing". Br Med J (Clin Res Ed) 292 (6522): 746–50. PMID 3082422[e]

External links