Specific heat ratio: Difference between revisions
imported>Milton Beychok m (→Determination of C_v values: Revised P to p to be consistent with Paul's revisons in the rest of the article) |
imported>Milton Beychok m (→Definitions of specific heat and heat capacity: Fixed the omission of "1 gram of") |
||
Line 189: | Line 189: | ||
== Definitions of specific heat and heat capacity == | == Definitions of specific heat and heat capacity == | ||
The ''specific heat'' (or ''specific heat capacity''), is the amount of heat energy required to increase the temperature of a unit quantity of a substance by a certain temperature interval. For example, the heat required to raise the temperature of water by 1 [[Kelvin (unit)|kelvin]] is 4.184 [[Joule (unit)|joule]]s. The specific heat capacity is usually expressed as Jg<sup>-1</sup>K<sup>-1</sup>. It may also be expressed on a molar basis as Jmol<sup>-1</sup>K<sup>-1</sup>. | The ''specific heat'' (or ''specific heat capacity''), is the amount of heat energy required to increase the temperature of a unit quantity of a substance by a certain temperature interval. For example, the heat required to raise the temperature of 1 gram of water by 1 [[Kelvin (unit)|kelvin]] is 4.184 [[Joule (unit)|joule]]s. The specific heat capacity is usually expressed as Jg<sup>-1</sup>K<sup>-1</sup>. It may also be expressed on a molar basis as Jmol<sup>-1</sup>K<sup>-1</sup>. | ||
The ''heat capacity'' (as distinct from ''specific heat'') is the amount of heat energy required to increase the temperature of a substance by a certain temperature interval. Heat capacity is an extensive property because its value is proportional to the amount of the substance. For example, a kilogram of water has a greater heat capacity than 100 grams of water. The heat capacity is usually expressed as JK<sup>-1</sup>. | The ''heat capacity'' (as distinct from ''specific heat'') is the amount of heat energy required to increase the temperature of a substance by a certain temperature interval. Heat capacity is an extensive property because its value is proportional to the amount of the substance. For example, a kilogram of water has a greater heat capacity than 100 grams of water. The heat capacity is usually expressed as JK<sup>-1</sup>. |
Revision as of 13:24, 9 April 2009
Specific heat ratio of various gases[1][2][3] | ||||||
---|---|---|---|---|---|---|
Gas | °C | k | Gas | °C | k | |
H2 | −181 | 1.597 | Dry Air |
20 | 1.40 | |
−76 | 1.453 | 100 | 1.401 | |||
20 | 1.41 | 200 | 1.398 | |||
100 | 1.404 | 400 | 1.393 | |||
400 | 1.387 | CO2 | 0 | 1.310 | ||
1000 | 1.358 | 20 | 1.30 | |||
2000 | 1.318 | 100 | 1.281 | |||
He | 20 | 1.66 | 400 | 1.235 | ||
N2 | −181 | 1.47 | NH3 | 15 | 1.310 | |
15 | 1.404 | CO | 20 | 1.40 | ||
Cl2 | 20 | 1.34 | O2 | −181 | 1.45 | |
Ar | −180 | 1.76 | −76 | 1.415 | ||
20 | 1.67 | 20 | 1.40 | |||
CH4 | −115 | 1.41 | 100 | 1.399 | ||
−74 | 1.35 | 200 | 1.397 | |||
20 | 1.32 | 400 | 1.394 |
The specific heat ratio of a gas is the ratio of the specific heat at constant pressure, , to the specific heat at constant volume, . It is sometimes referred to as the adiabatic index or the heat capacity ratio or the isentropic expansion factor.
Either (Roman letter k), (gamma) or (kappa) may be used to denote the specific heat ratio:
where:
- = the specific heat of a gas
- = refers to constant pressure conditions
- = refers to constant volume conditions
Ideal gas relations
For an ideal gas, the heat capacity is constant with temperature. Accordingly we can express the enthalpy as and the internal energy as . Thus, it can also be said that the specific heat ratio of an ideal gas is the ratio between the enthalpy to the internal energy:[3]
The specific heats at constant pressure, , of various gases are relatively easy to find in the technical literature. However, it can be difficult to find values of the specific heats at constant volume, . When needed, given , the following equation can be used to determine :[3]
where is the molar gas constant (also known as the Universal gas constant). This equation can be re-arranged to obtain:
Relation with degrees of freedom
The specific heat ratio ( ) for an ideal gas can be related to the degrees of freedom ( ) of a molecule by:
Thus for a monatomic gas, with three degrees of freedom:
and for a diatomic gas, with five degrees of freedom (at room temperature):
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k = \frac{7}{5} = 1.4} .
Earth's atmospheric air is primarily made up of diatomic gases with a composition of ~78% nitrogen (N2) and ~21% oxygen (O2). At 20 °C and an absolute pressure of 101.325 kPa, the atmospheric air can be considered to be an ideal gas. A diatomic molecule has five degrees of freedom (three translational and two rotational degrees of freedom, the vibrational degree of freedom is not involved except at high temperatures). This results in a value of:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k = \frac{5 + 2}{5} = \frac{7}{5} = 1.4}
which is consistent with the value of 1.40 listed for oxygen in the above table.
The specific heats of real gases (as differentiated from ideal gases) are not constant with temperature. As temperature increases, higher energy rotational and vibrational states become accessible to molecular gases, thus increasing the number of degrees of freedom and lowering Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} .
For a real gas, and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_v} usually increase with increasing temperature and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} decreases. Some correlations exist to provide values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} as a function of the temperature.
Isentropic compression or expansion of ideal gases
The specific heat ratio plays an important part in the isentropic process of an ideal gas (i.e., a process that occurs at constant entropy):[3]
- (1)
where, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p} is the absolute pressure and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V} is the volume. The subscripts 1 and 2 refer to conditions before and after the process, or at any time during that process.
Using the ideal gas law, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle pV = nRT} , equation (1) can be re-arranged to:
- (2)
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is the absolute temperature. Re-arranging further:
- (3) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(\frac{T_2}{T_1}\right)^k = \left(\frac{p_1}{p_2}\right)\left(\frac{p_2}{p_1}\right)^k = \left(\frac{p_2}{p_1}\right)^{k-1}}
we obtain the equation for the temperature change that occurs when an ideal gas is isentropically compressed or expanded:[3][4]
- (4) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{(k-1)/k}}
Equation (4) is widely used to model ideal gas compression or expansion processes in internal combustion engines, gas compressors and gas turbines.
Determination of values
Values for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_p} are readily available, but values for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_v} are not as available and often need to be determined. Values based on the ideal gas relation of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_p - C_v = R} are in many cases not sufficiently accurate for practical engineering calculations. If at all possible, an experimental value should be used.
A rigorous value can be calculated by determining from the residual property functions (also referred to as departure functions)[5][6][7] using this relation:[8]
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_v = C_p + T \frac{{\; \left( {\frac{\part p}{\part T}} \right) }^2_V} {\left( \frac{\part p}{\part V} \right)_T} }
Equations of state (EOS) (such as the Peng-Robinson equation of state) can be used to solve this relation and to provide values of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_v} that match experimental values very closely.
Definitions of specific heat and heat capacity
The specific heat (or specific heat capacity), is the amount of heat energy required to increase the temperature of a unit quantity of a substance by a certain temperature interval. For example, the heat required to raise the temperature of 1 gram of water by 1 kelvin is 4.184 joules. The specific heat capacity is usually expressed as Jg-1K-1. It may also be expressed on a molar basis as Jmol-1K-1.
The heat capacity (as distinct from specific heat) is the amount of heat energy required to increase the temperature of a substance by a certain temperature interval. Heat capacity is an extensive property because its value is proportional to the amount of the substance. For example, a kilogram of water has a greater heat capacity than 100 grams of water. The heat capacity is usually expressed as JK-1.
Specific heat capacities and heat capacities have the same symbols of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C_p} and . The specific heat ratio, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k} , has the same numeric value whether based on specific heats or heat capacities.
References
- ↑ Frank M. White (1999). Fluid Mechanics, Fourth Edition. McGraw-Hill. ISBN 0-07-0697167.
- ↑ Norbert A. Lange (Editor) (1969). Lange's Handbook of Chemistry, 10th Edition. McGraw-Hill, page 1524.
- ↑ 3.0 3.1 3.2 3.3 3.4 Stephan R. Turns (2006). Thermodynamics: Concepts and Application, First Edition. Cambridge University Press. ISBN 0-521-85042-8.
- ↑ Don. W. Green, James O Maloney and Robert H. Perry (Editors) (1984). Perry's Chemical Engineers' Handbook, Sixth Edition. McGraw-Hill, page 6-17. ISBN 0-07-049479-7.
- ↑ K.Y. Narayanan (2001). A Textbook of Chemical Engineering Thermodynamics. Prentice-Hall India. ISBN 81-203-1732-7.
- ↑ Y.V.C. Rao (1997). Chemical Engineering Thermodynamics, First Edition. Universities Press. ISBN 81-7371-048-1.
- ↑ Thermodynamics of Pure Substances Lecture by Mark Gibbs, University of Edinburgh, Scotland.
- ↑ Isochoric heat capacity (pdf page 61 of 308)
- Pages using ISBN magic links
- Editable Main Articles with Citable Versions
- CZ Live
- Engineering Workgroup
- Physics Workgroup
- Chemistry Workgroup
- Chemical Engineering Subgroup
- Articles written in American English
- Advanced Articles written in American English
- All Content
- Engineering Content
- Physics Content
- Chemistry Content
- Chemical Engineering tag
- Pages with math errors
- Pages with math render errors