Exponential function: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dmitrii Kouznetsov
imported>Paul Wormer
No edit summary
Line 1: Line 1:
'''Exponential function''' or exp, can be defined as solution of differential equation
The '''exponential function''' of ''z'', denoted by  exp(z) or ''e''<sup>''z''</sup>, can be defined as the solution of the differential equation
: <math> \exp^{\prime}(z)=\exp(z)</math>
: <math> \exp^{\prime}(z)\equiv \frac{d e^z}{dz}=\exp(z)</math>
with the additional condition  
with the additional condition  
: <math> \exp(0)=1 </math>
: <math> \exp(0)=1.\, </math>


The study of the exponential function began with [[Leonhard Euler]] around 1730<ref>William Dunham, ''Euler, the Master of us all'', MAA (1999) ISBN 0-8835-328-0.  Pp.17-37.</ref>
The study of the exponential function began with [[Leonhard Euler]] around 1730.<ref>William Dunham, ''Euler, the Master of us all'', MAA (1999) ISBN 0-8835-328-0.  Pp. 17-37.</ref>
Since that time, it has had widely applications in technology and science; in particular, [[exponential growth]] is described with such functions.
Since that time, it has had wide applications in technology and science; in particular, [[exponential growth]] is described with such functions.


==Properties==
==Properties==
The exponential is an [[entire function]].  
The exponential is an [[entire function]].  


For any complex <math>p</math> and <math>q</math>, the basic property holds:
For any complex ''p'' and ''q'', the basic property holds:
: <math> \exp(a)~\exp(b)=\exp(a+b) </math>
: <math> \exp(a)~\exp(b)=\exp(a+b) </math>
   
   

Revision as of 04:49, 29 October 2008

The exponential function of z, denoted by exp(z) or ez, can be defined as the solution of the differential equation

with the additional condition

The study of the exponential function began with Leonhard Euler around 1730.[1] Since that time, it has had wide applications in technology and science; in particular, exponential growth is described with such functions.

Properties

The exponential is an entire function.

For any complex p and q, the basic property holds:

The definition allows to calculate all the derivatives at zero; so, the Taylor expansion has the form

where means the set of complex numbers. The series converges for any complex . In particular, the series converges for any real value of the argument.

Inverse function

The inverse function of the exponential is the logarithm; for any complex , the relation holds:

Exponential also can be considered as inverse of logarithm, while the imaginary part of the argument is smaller than :

When the logarithm has a cut along the negative part of the real axis, exp can be considered.

Number e

is widely used in applications; this notation is commonly accepted. Its approximate value is

Failed to parse (syntax error): {\displaystyle {\rm e}=\exp(1) \approx 2.71828 18284 59045 23536}

Periodicity and relation with sin and cos functions

Exponential is periodic function; the period is :

The exponential is related to the trigonometric functions sine and cosine by de Moivre's formula:

Generalization of exponential

in the complex plane for some real values of .
versus for some real values of .

The notation is used for the exponential with scaled argument;

Notation is used for the iterated exponential:

For non-integer values of , the iterated exponential can be defined as

where is function satisfying conditions

The inverse function is defined with condition

and, within some range of values of

If in the notation the superscript is omitted, it is assumed to be unity; for example . If the subscript is omitted, it is assumed to be , id est,

At non-integer values of , the fixed points of logarithm are branch points of function ; in figure, the cut is placed parallel to the real axis. At there is an additional cut which goes along the negative part of the real axis. In the figure, these cuts are marked with pink.

References

  1. William Dunham, Euler, the Master of us all, MAA (1999) ISBN 0-8835-328-0. Pp. 17-37.
  • Ahlfors, Lars V. (1953). Complex analysis. McGraw-Hill Book Company, Inc..
  • H.Kneser. ``Reelle analytische Losungen der Gleichung und verwandter Funktionalgleichungen. Journal fur die reine und angewandte Mathematik, 187 (1950), 56-67.