Limit point: Difference between revisions
imported>Richard Pinch (→Properties: relation to closure) |
imported>Richard Pinch (supplied Ref Steen+Seebach) |
||
Line 29: | Line 29: | ||
===Condensation point=== | ===Condensation point=== | ||
A point ''x'' is a '''condensation point''' of a set ''S'' if every [[neighbourhood]] of ''x'' contains [[uncountable|uncountably]] many points of ''S''. | A point ''x'' is a '''condensation point''' of a set ''S'' if every [[neighbourhood]] of ''x'' contains [[uncountable|uncountably]] many points of ''S''. | ||
==References== | |||
* {{cite book | author=Lynn Arthur Steen | authorlink=Lynn Arthur Steen | coauthors= J. Arthur Seebach jr | title=[[Counterexamples in Topology]] | year=1978 | publisher=[[Springer-Verlag]] | location=Berlin, New York | isbn=0-387-90312-7 | pages=5-6 }} |
Revision as of 01:34, 28 December 2008
In topology, a limit point of a subset S of a topological space X is a point x that cannot be separated from S.
Definition
Formally, x is a limit point of S if every neighbourhood of x contains a point of S other than x itself.
Metric space
In a metric space (X,d), a limit point of a set S may be defined as a point x such that for all ε > 0 there exists a point y in S such that
This agrees with the topological definition given above.
Properties
- A subset S is closed if and only if it contains all its limit points.
- The closure of a set S is the union of S with its limit points.
Derived set
The derived set of S is the set of all limit points of S. A point of S which is not a limit point is an isolated point of S. A set with no isolated points is dense-in-itself. A set is perfect if it is closed and dense-in-itself; equivalently a perfect set is equal to its derived set.
Related concepts
Limit point of a sequence
A limit point of a sequence (an) in a topological space X is a point x such that every neighbourhood U of x contains all points of the sequence beyond some term n(U). A limit point of the sequence (an) need not be a limit point of the set {an}.
Adherent point
A point x is an adherent point of a set S if every neighbourhood of x contains a point of S (not necessarily distinct from x).
ω-Accumulation point
A point x is an ω-accumulation point of a set S if every neighbourhood of x contains infinitely many points of S.
Condensation point
A point x is a condensation point of a set S if every neighbourhood of x contains uncountably many points of S.
References
- Lynn Arthur Steen; J. Arthur Seebach jr (1978). Counterexamples in Topology. Berlin, New York: Springer-Verlag, 5-6. ISBN 0-387-90312-7.