Frobenius map: Difference between revisions
Jump to navigation
Jump to search
imported>Richard Pinch (specify commutativity) |
imported>Todd Coles No edit summary |
||
Line 1: | Line 1: | ||
{{subpages}} | |||
In [[algebra]], the '''Frobenius map''' is the ''p''-th power map considered as acting on [[commutativity|commutative]] algebras or fields of [[prime number|prime]] [[characteristic of a field|characteristic]] ''p''. | In [[algebra]], the '''Frobenius map''' is the ''p''-th power map considered as acting on [[commutativity|commutative]] algebras or fields of [[prime number|prime]] [[characteristic of a field|characteristic]] ''p''. | ||
Revision as of 17:17, 16 February 2009
In algebra, the Frobenius map is the p-th power map considered as acting on commutative algebras or fields of prime characteristic p.
We write and note that in characterstic p we have so that F is a ring homomorphism. A homomorphism of fields is necessarily injective, since it is a ring homomorphism with trivial kernel, and a field, viewed as a ring, has no non-trivial ideals. An endomorphism of a field need not be surjective, however. An example is the Frobenius map applied to the rational function field , which has as image the proper subfield .
Frobenius automorphism
When F is surjective as well as injective, it is called the Frobenius automorphism. One important instance is when the domain is a finite field.