Ellipse: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Paul Wormer
No edit summary
imported>Paul Wormer
Line 127: Line 127:
\ell \equiv \frac{b^2}{a},
\ell \equiv \frac{b^2}{a},
</math>
</math>
where ''ℓ'' is known as  the ''semi-lactus rectum'' of the ellipse; it is ''g'' for &theta; = 90<sup>°</sup>.
where 2''ℓ'' is known as  the ''latus rectum'' (lit. right side) of the ellipse; it is equal to 2''g'' for &theta; = 90<sup>°</sup> (twice the length of the vector <math>\vec{g}</math> when it makes a right angle with the major axis).
===Proof===
===Proof===
Earlier [Eq. (3)] it was derived for the distance from  the right focus F<sub>2</sub>  to P that
Earlier [Eq. (3)] it was derived for the distance from  the right focus F<sub>2</sub>  to P that

Revision as of 09:24, 30 April 2010

This article has a Citable Version.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article has an approved citable version (see its Citable Version subpage). While we have done conscientious work, we cannot guarantee that this Main Article, or its citable version, is wholly free of mistakes. By helping to improve this editable Main Article, you will help the process of generating a new, improved citable version.
PD Image
Fig. 1. Ellipse (black closed curve). The sum of the lengths of the two red line segments (ending in P1) is equal to the sum of the lengths of the two blue line segments (ending in P2).

In mathematics, an ellipse is a planar locus of points characterized by having a constant sum of distances to two given fixed points in the plane. In figure 1 two fixed points F1 and F2 are shown, these are the foci of the ellipse. An arbitrary point P1 on the ellipse has distance F1P1 to F1 and distance F2P1 to F2. Let d be the sum of distances of P1 to the foci,

then all points of the ellipse have the constant sum of distances d. Thus, another arbitrary point P2 on the ellipse has distance F1P2 to F1 and distance F2P2 to F2. By definition the sum of distances of P2 to the foci is equal to d,

The horizontal line segment S1–S2 in figure 1, going through the foci, is known as the major axis of the ellipse. Traditionally, the length of the major axis is indicated by 2a. The vertical dashed line segment, drawn halfway the foci perpendicular to the major axis, is referred to as the minor axis of the ellipse; its length is usually indicated by 2b. The major and minor axes are distinguished by ab. When a = b the ellipse is a circle—a special case of an ellipse. Clearly both axes are symmetry axes, reflection in either of them transforms the ellipse into itself. Basically, this a consequence of the fact that a reflection conserves (sums of) distances. The intersection of the axes is the center of the ellipse.

The two foci and the points S1 and S2 are connected by reflection in the minor axis. Hence the distance S2F2p is by symmetry equal to the distance S1F1. The distance of S2 to F1 is equal to 2ap. The distance of S2 to F2 is equal to p. By the definition of the ellipse the sum is equal to d, hence

The sum d of distances from any point on the ellipse to the foci is equal to the length of the major axis.

Conic section

PD Image
Fig. 2. Green section: ellipse; red section: circle.

In the Greek mathematics of Euclid (c. 300 B.C.) and Apollonius (c. 262–190 B.C.) ellipses arose mainly as intersections of planes with cones. In figure 2 a cone with a circular base is shown. It has a vertical symmetry axis, an axis of revolution. A cone can be generated by revolving a line—that intersects the axis under an angle—around the axis. Horizontal planes (planes perpendicular to the symmetry axis of the cone) give circles, that is, the intersection of a horizontal plane with the cone is a circle. Planes that make an angle less than 90° (but more than half the top angle of the cone) with the axis have an ellipse as intersection.

Eccentricity

The eccentricity e of an ellipse (usually denoted by e or ε) is the ratio of the distance OF2 (cf. figure 3) to half the length a of the major axis, that is, e ≡ OF2 / a. Let be a vector of length a along the x-axis, then

The following two vectors have common endpoint at P, see figure 3,

Move P now to the positive y-axis; its new position vector is:

By symmetry, the distance of the moved P to either focus is equal to half the length of the major axis (a) and equal to the length of the new vector (with endpoint on the y-axis). For the following two inner products (indicated by a centered dot) we find,

PD Image
Fig. 3. An ellipse situated such that the major and minor axis are along Cartesian axes. The center of the ellipse coincides with the origin O.

Hence, (in fact by the Pythagoras theorem applicable for P on the y-axis),

so that the eccentricity is given by

Algebraic form

Consider an ellipse that is located with respect to a Cartesian frame as in figure 3 (major axis on x-axis, minor axis on y-axis). For a point P=(x,y) of the ellipse it holds that

Note that this equation is reminiscent of the equation for a unit circle. An ellipse may be seen as a unit circle in which the x and the y coordinates are scaled independently, by 1/a and 1/b, respectively.

Proof

Introduce the vectors

By definition of ellipse, the sum of the lengths is 2a

Multiply Eq. (1) by

and work out the left-hand side:

Hence

Use

and one obtains

Add and subtract Eqs (1) and (2) and we find expressions for the distance of P to the foci,

Square both equations

Adding, using the earlier derived value for e2, and reworking gives

Division by b2 gives finally

Polar representation relative to focus

PD Image
Fig. 4. Polar representation

The length g of the vector (cf. figure 4)

is given by the polar equation

where 2 is known as the latus rectum (lit. right side) of the ellipse; it is equal to 2g for θ = 90° (twice the length of the vector when it makes a right angle with the major axis).

Proof

Earlier [Eq. (3)] it was derived for the distance from the right focus F2 to P that

Elimination of x from

gives

so that

Substitute

and the polar equation for the ellipse follows.