User:John R. Brews/Sample: Difference between revisions
imported>John R. Brews |
imported>John R. Brews No edit summary |
||
Line 22: | Line 22: | ||
==Notes== | ==Notes== | ||
<references/> | |||
[http://books.google.com/books?id=eYrl07GPkYkC&pg=RA1-PA236&dq=space+time+approach+to+quantum+electrodynamics&hl=en&ei=pACzTaMHh9-IAu-SjbAG&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCkQ6AEwAA#v=onepage&q=space%20time%20approach%20to%20quantum%20electrodynamics&f=false Feynman] | [http://books.google.com/books?id=eYrl07GPkYkC&pg=RA1-PA236&dq=space+time+approach+to+quantum+electrodynamics&hl=en&ei=pACzTaMHh9-IAu-SjbAG&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCkQ6AEwAA#v=onepage&q=space%20time%20approach%20to%20quantum%20electrodynamics&f=false Feynman] | ||
[http://books.google.com/books?id=UzISeBGrUSYC&pg=PA916&dq=Lienard-Wiechert%2Bpotential+8&hl=en&ei=lQayTeTkK6rfiALmgoiwBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCwQ6AEwAA#v=onepage&q&f=false Belušević] | [http://books.google.com/books?id=UzISeBGrUSYC&pg=PA916&dq=Lienard-Wiechert%2Bpotential+8&hl=en&ei=lQayTeTkK6rfiALmgoiwBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCwQ6AEwAA#v=onepage&q&f=false Belušević] | ||
Line 43: | Line 45: | ||
[http://www.amazon.com/Electromagnetic-Processes-Princeton-Astrophysics-Robert/dp/0691124442/ref=sr_1_1?s=books&ie=UTF8&qid=1303580247&sr=1-1#reader_0691124442 Lorentz-Dirac equation Gould] | [http://www.amazon.com/Electromagnetic-Processes-Princeton-Astrophysics-Robert/dp/0691124442/ref=sr_1_1?s=books&ie=UTF8&qid=1303580247&sr=1-1#reader_0691124442 Lorentz-Dirac equation Gould] | ||
[http://www.amazon.com/Electromagnetic-Processes-Dispersive-Media-Melrose/dp/0521410258 Fourier space description] | [http://www.amazon.com/Electromagnetic-Processes-Dispersive-Media-Melrose/dp/0521410258 Fourier space description] | ||
Revision as of 15:28, 23 April 2011
Liénard–Wiechert potentials
Define β as:
and unit vector û as
where R is the vector joining the observation point P to the moving charge q at the time of observation. Then the Liénard–Wiechert potentials consist of a scalar potential Φ and a vector potential A. The scalar potential is:[1]
where the tilde ‘ ~ ’ denotes evaluation at the retarded time ,
c being the speed of light and rO being the location of the particle on its trajectory.
The vector potential is:
Notes
- ↑ Fulvio Melia (2001). “§4.6.1 Point currents and Liénard-Wiechert potentials”, Electrodynamics. University of Chicago Press, pp. 101. ISBN 0226519570.
Feynman Belušević Gould Schwartz Schwartz Oughstun Eichler Müller-Kirsten Panat Palit Camara Smith classical distributed charge Florian Scheck Radiation reaction Fulvio Melia Radiative reaction Fulvio Melia Barut Radiative reaction Distributed charges: history Lorentz-Dirac equation Gould Fourier space description