Surface (geometry): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Salgueiro
No edit summary
imported>Natalie Watson
No edit summary
Line 1: Line 1:
A '''surface''' is a concept in [[Euclidean geometry]] that has [[length]] and [[breadth]] but no [[depth]]. Any set of points composed of pieces topologically equivalent to a subset of a plane is a surface:  this includes curved surfaces such as a paraboloid, infinite surfaces such as a plane, surfaces of limited extent such as the interior of a polygon, and surfaces with strange topology such as an infinitely long row of squares each separated by some distance, or the set of all points with rational coordinates in a plane.  A surface is made up of an [[infinite]] number of [[line (geometry)|lines]] or curves (curved lines).
A '''surface''' in mathematics has many different uses, the most common referring to a two-dimensional submanifold of three-dimensional Euclidean space, <math>\scriptstyle \mathbb{R}^2</math>.
 
 
Any set of points composed of pieces topologically equivalent to a subset of a plane is a surface:  this includes curved surfaces such as a paraboloid, infinite surfaces such as a plane, surfaces of limited extent such as the interior of a polygon, and surfaces with strange topology such as an infinitely long row of squares each separated by some distance, or the set of all points with rational coordinates in a plane.  
The extremities of a [[solid (geometry)|solid]] are made up of surfaces.
The extremities of a [[solid (geometry)|solid]] are made up of surfaces.
   
   

Revision as of 18:15, 21 July 2007

A surface in mathematics has many different uses, the most common referring to a two-dimensional submanifold of three-dimensional Euclidean space, .


Any set of points composed of pieces topologically equivalent to a subset of a plane is a surface: this includes curved surfaces such as a paraboloid, infinite surfaces such as a plane, surfaces of limited extent such as the interior of a polygon, and surfaces with strange topology such as an infinitely long row of squares each separated by some distance, or the set of all points with rational coordinates in a plane. The extremities of a solid are made up of surfaces.