Associated Legendre function: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Dan Nessett
(Moved reference to Bibliography sub-page. Moved external link to External Links sub-page)
imported>Paul Wormer
(rm brackets from superscripts (leftover from WP))
Line 1: Line 1:
{{subpages}}
{{subpages}}


In [[mathematics]] and [[physics]], an '''associated Legendre function'''  ''P''<sub>''l''</sub><sup>(''m'')</sup> is related to a [[Legendre polynomial]] ''P''<sub>''l''</sub> by the following equation
In [[mathematics]] and [[physics]], an '''associated Legendre function'''  ''P''<sub>''l''</sub><sup>''m''</sup> is related to a [[Legendre polynomial]] ''P''<sub>''l''</sub> by the following equation
:<math>
:<math>
P^{(m)}_\ell(x) = (1-x^2)^{m/2} \frac{d^m P_\ell(x)}{dx^m}, \qquad 0 \le m \le \ell.
P^{m}_\ell(x) = (1-x^2)^{m/2} \frac{d^m P_\ell(x)}{dx^m}, \qquad 0 \le m \le \ell.
</math>
</math>
For even ''m'' the associated Legendre function is a polynomial, for odd ''m'' the function contains the factor (1-''x'' &sup2; )<sup>&frac12;</sup> and hence is not a polynomial.  
For even ''m'' the associated Legendre function is a polynomial, for odd ''m'' the function contains the factor (1-''x'' &sup2; )<sup>&frac12;</sup> and hence is not a polynomial.


The associated Legendre functions are important in [[quantum mechanics]] and [[potential theory]].
The associated Legendre functions are important in [[quantum mechanics]] and [[potential theory]].
Line 12: Line 12:
Define
Define
:<math>
:<math>
\Pi^{(m)}_\ell(x) \equiv \frac{d^m P_\ell(x)}{dx^m},
\Pi^{m}_\ell(x) \equiv \frac{d^m P_\ell(x)}{dx^m},
</math>
</math>
where ''P''<sub>''l''</sub>(''x'')  is a Legendre polynomial.
where ''P''<sub>''l''</sub>(''x'')  is a Legendre polynomial.
Differentiating the [[Legendre polynomials#differential equation|Legendre differential equation]]:  
Differentiating the [[Legendre polynomials#differential equation|Legendre differential equation]]:
:<math>
:<math>
(1-x^2) \frac{d^2 \Pi^{(0)}_\ell(x)}{dx^2} - 2 x \frac{d\Pi^{(0)}_\ell(x)}{dx} + \ell(\ell+1)  
(1-x^2) \frac{d^2 \Pi^{0}_\ell(x)}{dx^2} - 2 x \frac{d\Pi^{0}_\ell(x)}{dx} + \ell(\ell+1)
\Pi^{(0)}_\ell(x) = 0,
\Pi^{0}_\ell(x) = 0,
</math>
</math>
''m'' times gives an equation for &Pi;<sup>(''m'')</sup><sub>''l''</sub>
''m'' times gives an equation for &Pi;<sup>''m''</sup><sub>''l''</sub>
:<math>
:<math>
(1-x^2) \frac{d^2 \Pi^{(m)}_\ell(x)}{dx^2} - 2(m+1) x \frac{d\Pi^{(m)}_\ell(x)}{dx} + \left[\ell(\ell+1)  
(1-x^2) \frac{d^2 \Pi^{m}_\ell(x)}{dx^2} - 2(m+1) x \frac{d\Pi^{m}_\ell(x)}{dx} + \left[\ell(\ell+1)
-m(m+1) \right] \Pi^{(m)}_\ell(x) = 0  .
-m(m+1) \right] \Pi^{m}_\ell(x) = 0  .
</math>
</math>
After substitution of  
After substitution of
:<math>
:<math>
\Pi^{(m)}_\ell(x) = (1-x^2)^{-m/2} P^{(m)}_\ell(x),
\Pi^{m}_\ell(x) = (1-x^2)^{-m/2} P^{m}_\ell(x),
</math>
</math>
and after multiplying through with <math>(1-x^2)^{m/2}</math>, we find the ''associated Legendre differential equation'':
and after multiplying through with <math>(1-x^2)^{m/2}</math>, we find the ''associated Legendre differential equation'':
:<math>
:<math>
(1-x^2) \frac{d^2 P^{(m)}_\ell(x)}{dx^2} -2x\frac{d P^{(m)}_\ell(x)}{dx} +
(1-x^2) \frac{d^2 P^{m}_\ell(x)}{dx^2} -2x\frac{d P^{m}_\ell(x)}{dx} +
\left[ \ell(\ell+1) - \frac{m^2}{1-x^2}\right] P^{(m)}_\ell(x)= 0 .
\left[ \ell(\ell+1) - \frac{m^2}{1-x^2}\right] P^{m}_\ell(x)= 0 .
</math>
</math>
In physical applications it is usually the case that  ''x'' = cos&theta;, then the  associated Legendre differential equation takes the form
In physical applications it is usually the case that  ''x'' = cos&theta;, then the  associated Legendre differential equation takes the form
:<math>
:<math>
\frac{1}{\sin \theta}\frac{d}{d\theta} \sin\theta \frac{d}{d\theta}P^{(m)}_\ell
\frac{1}{\sin \theta}\frac{d}{d\theta} \sin\theta \frac{d}{d\theta}P^{m}_\ell
+\left[ \ell(\ell+1) - \frac{m^2}{\sin^2\theta}\right] P^{(m)}_\ell = 0.
+\left[ \ell(\ell+1) - \frac{m^2}{\sin^2\theta}\right] P^{m}_\ell = 0.
</math>
</math>


Line 43: Line 43:
By the [[Legendre polynomials#Rodrigues formula|Rodrigues]]  formula, one obtains
By the [[Legendre polynomials#Rodrigues formula|Rodrigues]]  formula, one obtains


:<math>P_\ell^{(m)}(x) = \frac{1}{2^\ell \ell!} (1-x^2)^{m/2}\  \frac{d^{\ell+m}}{dx^{\ell+m}}(x^2-1)^\ell.</math>
:<math>P_\ell^{m}(x) = \frac{1}{2^\ell \ell!} (1-x^2)^{m/2}\  \frac{d^{\ell+m}}{dx^{\ell+m}}(x^2-1)^\ell.</math>


This equation allows extension of the range of ''m'' to: <font style="vertical-align: text-top;"> <math>-m \le \ell \le m</math></font>.
This equation allows extension of the range of ''m'' to: <font style="vertical-align: text-top;"> <math>-m \le \ell \le m</math></font>.


Since the associated Legendre equation is invariant under the substitution ''m'' &rarr; &minus;''m'', the equations for ''P''<sub>''l''</sub><sup>( &plusmn;''m'')</sup>, resulting from this expression, are proportional.  
Since the associated Legendre equation is invariant under the substitution ''m'' &rarr; &minus;''m'', the equations for ''P''<sub>''l''</sub><sup> &plusmn;''m''</sup>, resulting from this expression, are proportional.


To obtain the proportionality constant we consider
To obtain the proportionality constant we consider
:<math>
:<math>
(1-x^2)^{-m/2} \frac{d^{\ell-m}}{dx^{\ell-m}} (x^2-1)^{\ell} = c_{lm} (1-x^2)^{m/2}  \frac{d^{\ell+m}}{dx^{\ell+m}}(x^2-1)^{\ell},\qquad  0 \le m \le \ell,  
(1-x^2)^{-m/2} \frac{d^{\ell-m}}{dx^{\ell-m}} (x^2-1)^{\ell} = c_{lm} (1-x^2)^{m/2}  \frac{d^{\ell+m}}{dx^{\ell+m}}(x^2-1)^{\ell},\qquad  0 \le m \le \ell,
</math>
</math>
and we bring the factor (1&minus;''x''&sup2;)<sup>&minus;''m''/2</sup> to the other side.  
and we bring the factor (1&minus;''x''&sup2;)<sup>&minus;''m''/2</sup> to the other side.
Equate the coefficient of the highest power of ''x'' on the left and right hand side of  
Equate the coefficient of the highest power of ''x'' on the left and right hand side of
:<math>
:<math>
\frac{d^{\ell-m}}{dx^{\ell-m}} (x^2-1)^{\ell} = c_{lm} (1-x^2)^m  \frac{d^{\ell+m}}{dx^{\ell+m}}(x^2-1)^{\ell},\qquad  0 \le m \le \ell,  
\frac{d^{\ell-m}}{dx^{\ell-m}} (x^2-1)^{\ell} = c_{lm} (1-x^2)^m  \frac{d^{\ell+m}}{dx^{\ell+m}}(x^2-1)^{\ell},\qquad  0 \le m \le \ell,
</math>
</math>
and it follows that the proportionality constant is
and it follows that the proportionality constant is
Line 62: Line 62:
c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!} ,\qquad  0 \le m \le \ell,
c_{lm} = (-1)^m \frac{(\ell-m)!}{(\ell+m)!} ,\qquad  0 \le m \le \ell,
</math>
</math>
so that the associated Legendre functions of same |''m''| are related to each other by  
so that the associated Legendre functions of same |''m''| are related to each other by
:<math>
:<math>
P^{(-|m|)}_\ell(x) = (-1)^m \frac{(\ell-|m|)!}{(\ell+|m|)!} P^{(|m|)}_\ell(x).
P^{-|m|}_\ell(x) = (-1)^m \frac{(\ell-|m|)!}{(\ell+|m|)!} P^{|m|}_\ell(x).
</math>
</math>
Note that the phase factor (&minus;1)<sup>''m''</sup> arising in this expression is ''not'' due to some arbitrary phase convention, but arises from expansion of (1&minus;''x''&sup2;)<sup>m</sup>.
Note that the phase factor (&minus;1)<sup>''m''</sup> arising in this expression is ''not'' due to some arbitrary phase convention, but arises from expansion of (1&minus;''x''&sup2;)<sup>m</sup>.
Line 71: Line 71:
Important integral relations are
Important integral relations are
:<math>
:<math>
\int_{-1}^{1} P^{(m)}_{\ell}(x) P^{(m)}_{\ell'}(x) d x =
\int_{-1}^{1} P^{m}_{\ell}(x) P^{m}_{\ell'}(x) d x =
\frac{2\delta_{\ell\ell'}(\ell+m)!}{(2\ell+1)(\ell-m)!}
\frac{2\delta_{\ell\ell'}(\ell+m)!}{(2\ell+1)(\ell-m)!}
</math> &nbsp;&nbsp;&nbsp;[[Associated_Legendre_function/Proofs  | &#91;Proof&#93;]]
</math> &nbsp;&nbsp;&nbsp;[[Associated_Legendre_function/Proofs  | &#91;Proof&#93;]]


:<math>
:<math>
\int_{-1}^{1} P^{(m)}_{\ell}(x) P^{(n)}_{\ell}(x) \frac{d x}{1-x^2} =
\int_{-1}^{1} P^{m}_{\ell}(x) P^{n}_{\ell}(x) \frac{d x}{1-x^2} =
\frac{\delta_{mn}(\ell+m)!}{m(\ell-m)!}
\frac{\delta_{mn}(\ell+m)!}{m(\ell-m)!}
</math>
</math>
Line 85: Line 85:


:<math>
:<math>
(\ell-m+1)P_{\ell+1}^{(m)}(x) - (2\ell+1)xP_{\ell}^{(m)}(x) + (\ell+m)P_{\ell-1}^{(m)}(x)=0
(\ell-m+1)P_{\ell+1}^{m}(x) - (2\ell+1)xP_{\ell}^{m}(x) + (\ell+m)P_{\ell-1}^{m}(x)=0
</math> <!-- Edmonds 2.5.20 -->
</math> <!-- Edmonds 2.5.20 -->


:<math>
:<math>
xP_{\ell}^{(m)}(x) -(\ell-m+1)(1-x^2)^{1/2} P_{\ell}^{(m-1)}(x) - P_{\ell-1}^{(m)}(x)=0
xP_{\ell}^{m}(x) -(\ell-m+1)(1-x^2)^{1/2} P_{\ell}^{m-1}(x) - P_{\ell-1}^{m}(x)=0
</math> <!-- Edmonds 2.5.21 -->
</math> <!-- Edmonds 2.5.21 -->


:<math>
:<math>
P_{\ell+1}^{(m)}(x) - x P_{\ell}^{(m)}(x)-(\ell+m)(1-x^2)^{1/2}P_{\ell}^{(m-1)}(x)=0
P_{\ell+1}^{m}(x) - x P_{\ell}^{m}(x)-(\ell+m)(1-x^2)^{1/2}P_{\ell}^{m-1}(x)=0
</math> <!-- Edmonds 2.5.22 -->
</math> <!-- Edmonds 2.5.22 -->


:<math>
:<math>
(\ell-m+1)P_{\ell+1}^{(m)}(x)+(1-x^2)^{1/2}P_{\ell}^{(m+1)}(x)-
(\ell-m+1)P_{\ell+1}^{m}(x)+(1-x^2)^{1/2}P_{\ell}^{m+1}(x)-
(\ell+m+1) xP_{\ell}^{(m)}(x)=0
(\ell+m+1) xP_{\ell}^{m}(x)=0
</math><!-- Edmonds 2.5.23 -->
</math><!-- Edmonds 2.5.23 -->


:<math>
:<math>
(1-x^2)^{1/2}P_{\ell}^{(m+1)}(x)-2mxP_{\ell}^{(m)}(x)+
(1-x^2)^{1/2}P_{\ell}^{m+1}(x)-2mxP_{\ell}^{m}(x)+
(\ell+m)(\ell-m+1)(1-x^2)^{1/2}P_{\ell}^{(m-1)}(x)=0
(\ell+m)(\ell-m+1)(1-x^2)^{1/2}P_{\ell}^{m-1}(x)=0
</math><!-- Edmonds 2.5.24 -->
</math><!-- Edmonds 2.5.24 -->


:<math>
:<math>
(1-x^2)\frac{dP_{\ell}^{(m)}}{dx}(x) =(\ell+1)xP_{\ell}^{(m)}(x) -(\ell-m+1)P_{\ell+1}^{(m)}(x)
(1-x^2)\frac{dP_{\ell}^{m}}{dx}(x) =(\ell+1)xP_{\ell}^{m}(x) -(\ell-m+1)P_{\ell+1}^{m}(x)
</math>
</math>
:::::::<math>
:::::::<math>
=(\ell+m)P_{\ell-1}^{(m)}(x)-\ell x P_{\ell}^{(m)}(x)
=(\ell+m)P_{\ell-1}^{m}(x)-\ell x P_{\ell}^{m}(x)
</math><!-- Edmonds 2.5.25 -->
</math><!-- Edmonds 2.5.25 -->

Revision as of 01:13, 2 September 2009

This article is developed but not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Catalogs [?]
Proofs [?]
 
This editable, developed Main Article is subject to a disclaimer.

In mathematics and physics, an associated Legendre function Plm is related to a Legendre polynomial Pl by the following equation

For even m the associated Legendre function is a polynomial, for odd m the function contains the factor (1-x ² )½ and hence is not a polynomial.

The associated Legendre functions are important in quantum mechanics and potential theory.

Differential equation

Define

where Pl(x) is a Legendre polynomial. Differentiating the Legendre differential equation:

m times gives an equation for Πml

After substitution of

and after multiplying through with , we find the associated Legendre differential equation:

In physical applications it is usually the case that x = cosθ, then the associated Legendre differential equation takes the form

Extension to negative m

By the Rodrigues formula, one obtains

This equation allows extension of the range of m to: .

Since the associated Legendre equation is invariant under the substitution m → −m, the equations for Pl ±m, resulting from this expression, are proportional.

To obtain the proportionality constant we consider

and we bring the factor (1−x²)m/2 to the other side. Equate the coefficient of the highest power of x on the left and right hand side of

and it follows that the proportionality constant is

so that the associated Legendre functions of same |m| are related to each other by

Note that the phase factor (−1)m arising in this expression is not due to some arbitrary phase convention, but arises from expansion of (1−x²)m.

Orthogonality relations

Important integral relations are

    [Proof]

Recurrence relations

The functions satisfy the following difference equations, which are taken from Edmonds.