Associated Legendre function: Difference between revisions
imported>Paul Wormer (→Orthogonality relations: More emphasis on the presence of a proof on the Proofs subpage.) |
imported>Paul Wormer No edit summary |
||
Line 5: | Line 5: | ||
P^{m}_\ell(x) = (1-x^2)^{m/2} \frac{d^m P_\ell(x)}{dx^m}, \qquad 0 \le m \le \ell. | P^{m}_\ell(x) = (1-x^2)^{m/2} \frac{d^m P_\ell(x)}{dx^m}, \qquad 0 \le m \le \ell. | ||
</math> | </math> | ||
For even ''m'' the associated Legendre function is a polynomial, for odd ''m'' the function contains the factor (1 | For even ''m'' the associated Legendre function is a polynomial, for odd ''m'' the function contains the factor (1−''x'' ² )<sup>½</sup> and hence is not a polynomial. | ||
The associated Legendre functions are important in [[quantum mechanics]] and [[potential theory]]. | The associated Legendre functions are important in [[quantum mechanics]] and [[potential theory]]. | ||
According to Ferrers<ref> N. M. Ferrers, ''An Elementary Treatise on Spherical Harmonics'', MacMillan, 1877 (London), p. 77. [http://www.archive.org/stream/elementarytreati00ferriala#page/2/mode/2up Online].</ref> the polynomials were named in 1875 "Associated Legendre functions" by the British mathematician [[Isaac Todhunter]],<ref>I. Todhunter, ''An Elementary Treatise on Laplace's, Lamé's, and Bessel's Functions'', MacMillan, 1875 (London). In fact, Todhunter called the Legendre polynomials "Legendre coefficients". </ref> where "associated function" is Todhunter's translation of the German term ''zugeordnete Function'', coined in 1861 by [[Heinrich Eduard Heine|Heine]]<ref> E. Heine, ''Handbuch der Kugelfunctionen'', G. Reimer, 1861 (Berlin).[http://books.google.com/books?id=YE8DAAAAQAAJ&pg=PA3&dq=Eduard+Heine&hl=en#PPR1,M1 Google book online]</ref> and "Legendre" is in honor of the French mathematician [[Adrien-Marie Legendre]] (1752–1833), who was the first to introduce and study the polynomials ''P''<sub>''l''</sub>(''x''). | |||
==Differential equation== | ==Differential equation== |
Revision as of 03:43, 5 September 2009
In mathematics and physics, an associated Legendre function Plm is related to a Legendre polynomial Pl by the following equation
For even m the associated Legendre function is a polynomial, for odd m the function contains the factor (1−x ² )½ and hence is not a polynomial.
The associated Legendre functions are important in quantum mechanics and potential theory.
According to Ferrers[1] the polynomials were named in 1875 "Associated Legendre functions" by the British mathematician Isaac Todhunter,[2] where "associated function" is Todhunter's translation of the German term zugeordnete Function, coined in 1861 by Heine[3] and "Legendre" is in honor of the French mathematician Adrien-Marie Legendre (1752–1833), who was the first to introduce and study the polynomials Pl(x).
Differential equation
Define
where Pl(x) is a Legendre polynomial. Differentiating the Legendre differential equation:
m times gives an equation for Πml
After substitution of
and after multiplying through with , we find the associated Legendre differential equation:
In physical applications it is usually the case that x = cosθ, then the associated Legendre differential equation takes the form
Extension to negative m
By the Rodrigues formula, one obtains
This equation allows extension of the range of m to: .
Since the associated Legendre equation is invariant under the substitution m → −m, the equations for Pl ±m, resulting from this expression, are proportional.
To obtain the proportionality constant we consider
and we bring the factor (1−x²)−m/2 to the other side. Equate the coefficient of the highest power of x on the left and right hand side of
and it follows that the proportionality constant is
so that the associated Legendre functions of same |m| are related to each other by
Note that the phase factor (−1)m arising in this expression is not due to some arbitrary phase convention, but arises from expansion of (1−x²)m.
Orthogonality relations
Important integral relations are:
(see the subpage Proofs for a detailed proof of this relation) and:
Recurrence relations
The functions satisfy the following difference equations, which are taken from Edmonds.[4]
Reference
- ↑ N. M. Ferrers, An Elementary Treatise on Spherical Harmonics, MacMillan, 1877 (London), p. 77. Online.
- ↑ I. Todhunter, An Elementary Treatise on Laplace's, Lamé's, and Bessel's Functions, MacMillan, 1875 (London). In fact, Todhunter called the Legendre polynomials "Legendre coefficients".
- ↑ E. Heine, Handbuch der Kugelfunctionen, G. Reimer, 1861 (Berlin).Google book online
- ↑ A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton University Press, 2nd edition (1960)