Characteristic function: Difference between revisions
Jump to navigation
Jump to search
imported>Richard Pinch (subpages) |
imported>Richard Pinch (Inclusion) |
||
Line 6: | Line 6: | ||
*[[Intersection]]: <math>\chi_{A \cap B} = \min\{\chi_A,\chi_B\} = \chi_A \cdot \chi_B ;\,</math> | *[[Intersection]]: <math>\chi_{A \cap B} = \min\{\chi_A,\chi_B\} = \chi_A \cdot \chi_B ;\,</math> | ||
*[[Union]]: <math>\chi_{A \cup B} = \max\{\chi_A,\chi_B\} = \chi_A + \chi_B - \chi_A \cdot \chi_B ;\,</math> | *[[Union]]: <math>\chi_{A \cup B} = \max\{\chi_A,\chi_B\} = \chi_A + \chi_B - \chi_A \cdot \chi_B ;\,</math> | ||
*[[Symmetric difference]]: <math>\chi_{A \bigtriangleup B} = \chi_A + \chi_B \pmod 2 .\,</math> | *[[Symmetric difference]]: <math>\chi_{A \bigtriangleup B} = \chi_A + \chi_B \pmod 2 ;\,</math> | ||
*[[Inclusion]]: <math>A \subseteq B \Leftrightarrow \chi_A \le \chi_B .\,</math> |
Revision as of 12:29, 8 December 2008
In set theory, the characteristic function or indicator function of a subset A of a set X is the function, often denoted χA or IA, from X to the set {0,1} which takes the value 1 on elements of A and 0 otherwise.
We can express elementary set-theoretic operations in terms of characteristic functions: