Characteristic function: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Giangiacomo Gerla
No edit summary
imported>Giangiacomo Gerla
mNo edit summary
Line 5: Line 5:
*[[Intersection]]: <math>\chi_{A \cap B} = \min\{\chi_A,\chi_B\} = \chi_A \cdot \chi_B ;\,</math>
*[[Intersection]]: <math>\chi_{A \cap B} = \min\{\chi_A,\chi_B\} = \chi_A \cdot \chi_B ;\,</math>
*[[Union]]: <math>\chi_{A \cup B} = \max\{\chi_A,\chi_B\} = \chi_A + \chi_B - \chi_A \cdot \chi_B ;\,</math>
*[[Union]]: <math>\chi_{A \cup B} = \max\{\chi_A,\chi_B\} = \chi_A + \chi_B - \chi_A \cdot \chi_B ;\,</math>
*[[Symmetric difference]]: <math>\chi_{A \bigtriangleup B} = \chi_A + \chi_B \pmod 2 ;\,</math>
*[[complement]]: <math> \chi_{-A} = 1-\chi_A</math>
*[[Inclusion]]: <math>A \subseteq B \Leftrightarrow \chi_A \le \chi_B .\,</math>
*[[Inclusion]]: <math>A \subseteq B \Leftrightarrow \chi_A \le \chi_B .\,</math>



Revision as of 02:39, 11 January 2009

In set theory, the characteristic function or indicator function of a subset X of a set S is the function, often denoted χA or IA, from S to the set {0,1} which takes the value 1 on elements of X and 0 otherwise.

We can express elementary set-theoretic operations in terms of characteristic functions:

  • Empty set:
  • Intersection:
  • Union:
  • complement:
  • Inclusion:


In mathematics, characteristic function can refer also to any several distinct concepts:


where "E" means expected value. See characteristic function (probability theory).