Product topology: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Boris Tsirelson
(missing phrase, and better format of formulas)
imported>Boris Tsirelson
m (formula formatting)
Line 8: Line 8:
The product topology on an arbitrary product <math>\textstyle\prod_{\lambda \in \Lambda} X_\lambda</math> is the topology with sub-basis <math>\textstyle\prod_{\lambda \in \Lambda} G_\lambda</math> where each ''G''<sub>λ</sub> is open in ''X''<sub>λ</sub> and where all but finitely many of the ''G''<sub>λ</sub> are equal to the whole of the corresponding ''X''<sub>λ</sub>.
The product topology on an arbitrary product <math>\textstyle\prod_{\lambda \in \Lambda} X_\lambda</math> is the topology with sub-basis <math>\textstyle\prod_{\lambda \in \Lambda} G_\lambda</math> where each ''G''<sub>λ</sub> is open in ''X''<sub>λ</sub> and where all but finitely many of the ''G''<sub>λ</sub> are equal to the whole of the corresponding ''X''<sub>λ</sub>.


The product topology has a [[universal property]]: if there is a topological space ''Z'' with [[continuous map]]s <math>f_\lambda:Z \rightarrow X_\lambda</math>, then there is a continuous map <math>h : Z \rightarrow \prod_{\lambda \in \Lambda} X_\lambda</math> such that the compositions <math>h \cdot \mathrm{pr}_\lambda = f_\lambda</math>.  This map ''h'' is defined by
The product topology has a [[universal property]]: if there is a topological space ''Z'' with [[continuous map]]s <math>f_\lambda:Z \rightarrow X_\lambda</math>, then there is a continuous map <math>\textstyle h : Z \to \prod_{\lambda \in \Lambda} X_\lambda</math> such that the compositions <math>h \cdot \mathrm{pr}_\lambda = f_\lambda</math>.  This map ''h'' is defined by


:<math> h(z) = ( \lambda \mapsto f_\lambda(z) ) . \, </math>
:<math> h(z) = ( \lambda \mapsto f_\lambda(z) ) . \, </math>

Revision as of 15:39, 6 February 2010

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

In general topology, the product topology is an assignment of open sets to the Cartesian product of a family of topological spaces.

The product topology on a product of two topological spaces (X,T) and (Y,U) is the topology with sub-basis for open sets of the form G×H where G is open in X (that is, G is an element of T) and H is open in Y (that is, H is an element of U). So a set is open in the product topology if is a union of products of open sets.

By iteration, the product topology on a finite Cartesian product X1×...×Xn is the topology with sub-basis of the form G1×...×Gn.

The product topology on an arbitrary product is the topology with sub-basis where each Gλ is open in Xλ and where all but finitely many of the Gλ are equal to the whole of the corresponding Xλ.

The product topology has a universal property: if there is a topological space Z with continuous maps , then there is a continuous map such that the compositions . This map h is defined by

The projection maps prλ to the factor spaces are continuous and open maps.

References

  • Wolfgang Franz (1967). General Topology. Harrap, 52-55. 
  • J.L. Kelley (1955). General topology. van Nostrand, 90-91.