Euler's theorem (rotation): Difference between revisions
imported>Paul Wormer (→Proof) |
imported>Jitse Niesen m (typo) |
||
Line 53: | Line 53: | ||
</math> | </math> | ||
If '''R''' has more than one invariant vector then φ = | If '''R''' has more than one invariant vector then φ = 0 and '''R''' = '''E'''. ''Any'' vector is an invariant vector of '''E'''. | ||
===Excursion into matrix theory=== | ===Excursion into matrix theory=== | ||
In order to prove the previous equation some facts from matrix theory must be recalled. | In order to prove the previous equation some facts from matrix theory must be recalled. |
Revision as of 04:40, 14 May 2009
In mathematics, Euler's theorem for rotations states that a rotation of a three-dimensional rigid body (a motion of the rigid body that leaves at least one point of the body in place) is around an axis, the rotation axis. This means that all points of the body that lie on the axis are invariant under rotation, i.e., do not move.
Proof
Leonhard Euler gave a geometric proof that rests on the fact that a rotation can be described as two consecutive reflections in two intersecting mirror planes. Points in a mirror plane are invariant under reflection and hence the points on the intersection (a line) of the two planes are invariant under the two consecutive reflections and hence under rotation.
An algebraic proof starts from the fact that a rotation is a linear map in one-to-one correspondence with a 3×3 orthogonal matrix R, i.e, a matrix for which
where E is the 3×3 identity matrix and superscript T indicates the transposed matrix. Clearly an orthogonal matrix has determinant ±1, for invoking some properties of determinants, one can prove
The matrix with positive determinant is a proper rotation and with a negative determinant an improper rotation (is equal to a reflection times a proper rotation).
It will now be shown that a rotation matrix R has at least one invariant vector n, i.e., R n = n. Note that this is equivalent to stating that the vector n is an eigenvector of the matrix R with eigenvalue λ = 1.
A proper rotation matrix R has at least one unit eigenvalue. Using
we find
From this follows that λ = 1 is a root (solution) of the secular equation, that is,
In other words, the matrix R − E is singular and has a non-zero kernel, that is, there is at least one non-zero vector, say n, for which
The line μn for real μ is invariant under R, i.e, μn is a rotation axis. This proves Euler's theorem.
Equivalence of an orthogonal matrix to a rotation matrix
A proper orthogonal matrix is equivalent to
If R has more than one invariant vector then φ = 0 and R = E. Any vector is an invariant vector of E.
Excursion into matrix theory
In order to prove the previous equation some facts from matrix theory must be recalled.
An m×m matrix A has m orthogonal eigenvectors if and only if A is normal, that is, if A†A = AA†. [1] This result is equivalent to stating that normal matrices can be brought to diagonal form by a unitary similarity transformation:
and U is unitary, that is,
The eigenvalues α1, ..., αm are roots of the secular equation. If the matrix A happens to be unitary (and note that unitary matrices are normal), then
and it follows that the eigenvalues of a unitary matrix are on the unit circle in the complex plane:
Also an orthogonal (real unitary) matrix has eigenvalues on the unit circle in the complex plane. Moreover, since its secular equation (an mth order polynomial in λ) has real coefficients, it follows that its roots appear in complex conjugate pairs, that is, if α is a root then so is α∗.
After recollection this general facts from matrix theory, we return to the rotation matrix R. It follows from its realness and orthogonality that
with the third column of the 3×3 matrix U equal to the invariant vector n. Writing u1 and u2 for the first two columns of U, this equation gives
If u1 has eigenvalue 1, then φ= 0 and u2 has also eigenvalue 1, which implies that in that case R = E.
Finally, the matrix equation is transformed by means of a unitary matrix,
which gives
The columns of U′ are orthonormal. The third column is still n, the other two columns are perpendicular to n. This result implies that any orthogonal matrix R is equivalent to a rotation over an angle φ around an axis n.
Note
- ↑ The dagger symbol † stands for complex conjugation followed by transposition. For real matrices complex conjugation does nothing and daggering a real matrix is the same as transposing it.