Diabesity: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Nicholas Devlin
imported>Nicholas Devlin
Line 41: Line 41:
==Causes of type 2 diabetes in obese patients ==
==Causes of type 2 diabetes in obese patients ==
===Endoplasmic reticulum stress causing hyper-activation of Jun kinases (JNKs), which leads to phosphorylation of insulin receptor substrates (IRSs), inhibiting insulin signaling===
===Endoplasmic reticulum stress causing hyper-activation of Jun kinases (JNKs), which leads to phosphorylation of insulin receptor substrates (IRSs), inhibiting insulin signaling===
Text to be added
Endoplasmic reticulum stress can be classed as a molecular-level link connecting obesity, insulin resistance, and type 2 diabetes. In related research, mice lacking X-box-binding protein-1 (XBP-1), a transcription factor used to modulate the body’s response to ER stress, as well as mice that had induced ER stress via pharmacological means, showed the development of insulin resistance. <br />
 
ER stress or down-regulation of XBP-1 causes the suppression of insulin receptor signaling in the body’s cells via activation of Jun kinases (JNKs). In mouse studies this insulin receptor suppression led to increased insulin resistance and the development of type 2 diabetes.<br />
 
It is thought that increased activity of JNKs causes the phosphorylation of insulin receptor substrates (IRSs) within important tissues such as liver, muscle and fat. As well as insulin resistance, studies have shown that increased JNK activity can result in insulin production inhibition in the pancreatic β cells. This hypothesis is strengthened by studies of mice which lack Jun kinases such as JNK1. In such animals, obesity induced obesity prevalence is reduced, and in general such animals also benefit from reduced adiposity.  <br />           
 
In summary there is a key process which controls the detection of obesity induced ER stress, causing an inhibition of insulin action that ultimately leads to insulin resistance and type 2 diabetes. It is thought that ER stress is a precursor to cell inflammation as a result of obesity. This then leads to complete breakdown of glucose homeostasis.


===Dysfunction of the pancreatic β-cells, which do not produce or secrete enough insulin to compensate for insulin resistance===
===Dysfunction of the pancreatic β-cells, which do not produce or secrete enough insulin to compensate for insulin resistance===

Revision as of 12:39, 26 October 2009

This page was started in the framework of an Eduzendium course and needs to be assessed for quality. If this is done, this {{EZnotice}} can be removed.

This article is developed but not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable, developed Main Article is subject to a disclaimer.


(John - Ive put an intro in because our page seems like we need A LOT OF WORK done. we need structure and suggestions really needed guys!!! lets get chat started on the board - this of course it can be changed it is only a rough draft)

Diabesity describes the almost inextricable relationship between Diabetes and Obesity. It was first coined by Sims in 1973, to describe the close link between type 2 diabetes mellitus (T2DM) and obesity (1,2,3). They found that by overfeeding young men, with no family history of diabetes, they could produce signs of diabetes; increases in insulin, glucose, triglycerides and impaired glucose tolerance(1). This led to the thought that obesity is associated with developing T2DM.

Following its coinage over 30 years ago, a very large research project called Diabesity has now been set up and funded by the European Union, involving over 27 institutions from 24 member countries. It aims to identify new genes implicated in obesity and identify several new drug targets for the treatment and prevention of diabesity (4). The University of Edinburgh plays an key role in this project, with Professor Seckl and Professor Leng important collaborators. (ive left references to prevent confusion later - this should be organised when everything is collated together)

1. EAH Sims, E Danforth, ES Horton, GA Bray, JA Glennon and LB Salans, Endocrine and metabolic effects of experimental obesity in man, Recent Prog Horm Res 29 (1973), pp. 457–496.

2 "Obesity". Haslam DW, James WP (October 2005). Lancet 366 (9492): pp: 1197–209.

3 Ellenberg & Rifkin's diabetes mellitus Daniel Porte,Robert S. Sherwin,Alain Baron,Max Ellenberg,Harold Rifkin McGraw-Hill Professional; 6 edition (September 23, 2002)


4 http://www.eurodiabesity.org/ </ref>

Title of Part 1

Title of Subpart 1

In here you could write about various informations linked to various references for example from journals. [1] [2]


Title of Subpart 2

You can also insert diagram.

==Causes of type 2 diabetes in obese patients==


You can also cite published work accessible online. [3]

Causes of type 2 diabetes in obese patients

Endoplasmic reticulum stress causing hyper-activation of Jun kinases (JNKs), which leads to phosphorylation of insulin receptor substrates (IRSs), inhibiting insulin signaling

Endoplasmic reticulum stress can be classed as a molecular-level link connecting obesity, insulin resistance, and type 2 diabetes. In related research, mice lacking X-box-binding protein-1 (XBP-1), a transcription factor used to modulate the body’s response to ER stress, as well as mice that had induced ER stress via pharmacological means, showed the development of insulin resistance.

ER stress or down-regulation of XBP-1 causes the suppression of insulin receptor signaling in the body’s cells via activation of Jun kinases (JNKs). In mouse studies this insulin receptor suppression led to increased insulin resistance and the development of type 2 diabetes.

It is thought that increased activity of JNKs causes the phosphorylation of insulin receptor substrates (IRSs) within important tissues such as liver, muscle and fat. As well as insulin resistance, studies have shown that increased JNK activity can result in insulin production inhibition in the pancreatic β cells. This hypothesis is strengthened by studies of mice which lack Jun kinases such as JNK1. In such animals, obesity induced obesity prevalence is reduced, and in general such animals also benefit from reduced adiposity.

In summary there is a key process which controls the detection of obesity induced ER stress, causing an inhibition of insulin action that ultimately leads to insulin resistance and type 2 diabetes. It is thought that ER stress is a precursor to cell inflammation as a result of obesity. This then leads to complete breakdown of glucose homeostasis.

Dysfunction of the pancreatic β-cells, which do not produce or secrete enough insulin to compensate for insulin resistance

Many studies have shown the importance of insulin secretory capability in the formation of type 2 diabetes. If an inadequate volume of insulin is secreted by the pancreatic β cells, then adequate glucose uptake cannot occur. Couple this with increased cell insulin resistance correlated to levels of obesity, and you have the root cause of why incidence of type 2 diabetes increases with increasing levels of obesity.

In mice fed on a high fat diet (HFD), studies have shown that the subsequent diagnosis of type 2 diabetes was at least party due to reduced insulin secretion in response to greater insulin resistance.

Analysis of insulin secretion from isolated pancreatic islets of HFD mice found disfunction in the islets for the production and/or secretion of insulin. Average islet insulin contents of HFD mice were found to be significantly lower than a control group. In addition, the islets from the HFD mice showed significantly lower insulin secretion than the control group. An increase in glucagon-positive cells within the islets was also discovered in the HFD group. These physiological changes are all present in human cases of type 2 diabetes.

It is also possible that there is increased pancreatic β cell apoptosis, induced by increasing levels of obesity, reducing the level of insulin secretion. This reduced insulin secretion cannot then cope with the increasing cell insulin resistance caused by obesity.

Further research has shown that disfunction and death of the pancreatic β cells may be as a result of cell inflammation due to hyperglycemia, dyslipidemia and increased levels of adipokines.

The hormone resistin, which is thought to cause resistance to insulin

The discovery of resistin came about through the development of a new class of anti-diabetic drugs called thiazolidinediones. (TZDs) These drugs act by increasing a target tissue’s sensitivity to insulin. They function by acting as a ligand for a nuclear receptor called peroxisome proliferator activated receptor-ϒ (PPARϒ) which is found in abundance in adipocytes. Tests showed a high correlation between TZD/PPARϒ binding and glucose lowering in vivo. However, the target genes of TZD-bound PPARϒ are unknown. To try and discover whether insulin resistance might be controlled by a TZD - controlled, adipocyte-originating substance, a genetic screen was carried out for genes induced by adipocyte formation but down regulated when treated with TZDs. This screen produced evidence of a TZD- regulated protein, called resistin.

Resistin gene expression increases when adipocytes differentiate, and decreases when treated with TZD drugs such as rosiglitazone, pioglitazone and troglitazon. Mouse studies show that resistin gene expression occurs almost exclusively in white adipose tissue, with highest expression in female gonadal fat. An amino acid sequence expressed in humans with a large similarity to resistin was also found.

In mice serum analysis, levels of resistin which decrease with fasting and are restored with re-feeding were discovered. In mice fed on a 45% fat content diet for 8 weeks, the levels of resistin in serum are greatly elevated, initially increasing within four weeks of the diet being adopted, the same point as when the mice become obese and insulin resistant. Higher than normal resistin levels can also be detected in ob/ob and db/db mice, individuals genetically predisposed to obesity and diabetes.

Intraperitoneal administration of resistin to test mice results in impaired insulin sensitivity, while insulin levels remain normal. Both in vitro and in vivo studies show that neutralization of resistin causes enhanced insulin action and glucose uptake. In obese, diabetic mice, resistin neutralization causes reduced levels of hyperglycemia by increasing insulin sensitivity.

At present the molecular target of resistin is not known, but it is hypothesized that it modulates at least one step in the insulin signaling pathway. Due to it’s recent discovery, much work has still to be conducted to fully understand it’s function. At present there is great debate within the scientific community as to whether levels of resistin have a significant effect on insulin activity in humans.

In humans, resistin is thought to be secreted by macrophages not adipocytes. Despite this, there is still a strong correlation in humans between heightened levels of resistin, obesity, and type 2 diabetes.

The immunology of obesity

by Luke Kennedy Burke

Type 2 diabetes has long been thought of as primarily a metabolic disease. A series of recent studies have challenged this dogma and implicated an unlikely candidate system in the promotion of disease onset - the immune system. Mild inflammation of fat tissue in obese patients reportedly acts through immune-cell processes to impair insulin signalling in adipocytes. This work therefore provides a novel way of understanding the link between obesity and type 2 diabetes.

The development of insulin insensitivity involves the malfunction of several organs, however, this article will focus on the role of adipose tissue. Adipocytes have a duplicitous role in that they are both a storage depot and endocrine organ. Obesity is accompanied by a state of chronic, low-grade inflammation of adipose tissue (Feuerer et al., 2009). However, unlike other forms of inflammation which are subject to control mechanisms, fat inflammation appears to escape immune regulation. In the case of type 2 diabetes, it is the invasion of adipose tissue by cytokine-producing macrophages that can lead to insulin resistance. The mechanistic underpinning of this phenomenon have recently been the subject of both novel and intense investigation, the results of which have provided new understanding and therapeutic targets for obesity-induced type 2 diabetes. More specifically, several publications from Japanese, American and American groups have all pointed to a common culprit – T regulatory cells (Treg cells). These specialised members of the T cell family play a key role in suppressing inappropriate activation of the immune system. They do so by interacting with macrophages and regulating the inflammatory cascade (Nishimura et al., 2009). Feuerer et al. (2009) isolated a specific phenotype of T cell, CD4, which is enriched in the adipose tissue of lean mice but dramatically reduced in that of obese, insulin-resistant mice. Through loss-of-function experiments it was shown that CD4 cells are functionally active and their absence results in inflammatory cytokine production and reduced glucose uptake. Importantly, CD4 T cells were only shown to behave in this manner in visceral fat stores, which, unlike subcutaneous stores, are associated with the development of type 2 diabetes. A complementary study, performed by Winer et al. (2009), demonstrated that obesity-induced type 2 diabetes can be remedied by treatment with CD antibody treatment. This was even observed in mice who continued on a Western diet and offers therapeutic targets for future drug development. A separate study by Nishimura et al. (2009) revealed that CD8 effector T cells, a different phenotype of Treg cell, are responsible for the chronic inflammation observed in adipose tissue. The use CD-8 antibodies, however, reduces inflammation and the onset of insulin sensitivity.

Another aspect of the immune system that has been implicated in type 2 diabetes onset is mast cell function. Mast cells respond to allergic and parasitic challenge by releasing inflammatory mediators, thus playing an integral protective role. An abundance of mast cells beyond that of what is immunologically necessary can cuase the cells to become unstable, leading to instability and inflammation. The white adipose tissue of obese mice possesses a significantly greater number of mast cells when compared to that of lean equivalents. This led Shi et al. to ask whether the manipulation of mast cell number, achieved through genetic reduction and pharmacological equalization, can reduce the onset of obesity and type 2 diabetes. In the first set of experiments, genetically mast cell-deficient mice (Kit W-sh/ Kit W-sh) and control mice were fed on a Western-diet (4.5 kcal /gram) for three months. Loss of mass cell function appeared to be having the effect of lowering serum leptin, increasing glucose tolerance and increasing insulin sensitivity in comparison to the control group. In the second strand of experimentation, mice were treated with mast cell-stabilizing medication to ask whether diet-induced obesity and diabetes could be inhibited. After two months on a Western-diet, mice were either switched to a healthy diet, supplied with medication, or a combination of both. While the dietary adjustment caused minor improvements, the mast-cell stabilizing medication stimulated significant restitution and the combination allowed practically a full recovery in comparison to control group who continued on a Western-diet. Shi has since signed a contract with a pharmaceutical company to develop this mast cell-stabilizing drug for testing in humans.

Both of these drugs are already used to treat other medical conditions and are therefore both safe and available, however the question that remains to be answered is do Zaditor and cromolyn offer similar protection against diabetes in humans?

At present the application from model to human appears positive. A study into T cell concentration in human abdominal fat tissue by Winer et al. (2009) has revealed an abundance in normal weight individuals when compared to that of obese, diabetic patients. A similar reflection of mouse data was found when the number of macrophages was examined. Obese and diabetic fat tissue that was absent of Treg cells contained a large number of macrophages, which is in keeping with the understanding that Tregs are crucial in regulating macrophage number and thus preventing inflammation.

Key References

Normalization of obesity-associated insulin resistance through immunotherapy http://www.nature.com/nm/journal/v15/n8/full/nm.2001.html

Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice http://www.nature.com/nm/journal/v15/n8/full/nm.1994.html

Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters http://www.nature.com/nm/journal/v15/n8/full/nm.2002.html

CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity http://www.nature.com/nm/journal/v15/n8/full/nm.1964.html

The protein kinase IKKepsilon regulates energy balance in obese mice http://www.cell.com/retrieve/pii/S0092867409007934

T-ing up inflammation in fat http://www.nature.com/nm/journal/v15/n8/full/nm0809-846.html

Treatment of obesity and type 2 diabetes

Obesity, alongside genetic predisposition is one of the most significant risk factors for the development of diabetes mellitus. Lifestyle changes provide the basis of treatment in all obese patients. When lifestyle changes fail to reduce the weight in obese patients, anti-obesity drugs are used. [1] There are few well tolerated drugs which have been proven to have long term efficacy in maintaining weight loss. Current available medications include sibutramine and orlistat. Sibutramine reduces body weight and appetite and increases satiety. Numerous prospective randomised controlled trials have shown it to be effective, with one trial finding that patients on sibutramine lost 4.3kg or 4.6% more weight than those taking the placebo. The most common adverse effects are dry mouth, constipation and insomnia. [2]) Orlistat acts by inhibiting pancreatic and gastrointestinal lipases, preventing absorption of about 30% of dietary fat. Randomized controlled trials have shown that patients taking this have lost 2.7kg or 2.9% more weight than controls. As orlistat reduces LDL and cholesterol levels independently of reductions in body weight, it also retards the progression to a diabetic state and aids glycemic control in patients with diabetes. Side effects include fecal urgency and abdominal cramping. [2]

Patients with impaired glucose tolerance, impaired fasting glucose and obesity are all at a high risk of developing type 2 diabetes, therefore combination therapy for glycaemic control and weight management is often required. [1] Several strategies are used, including the promotion of weight loss through lifestyle modificantions and anti-obesity drugs, improving glycemic control through the reduction of insulin resistance and the treatment of common associated risk factors such as hypertension and dyslipidaemia to improve cardiovascular prognosis. [1]

There is significant evidence that the development of type 2 diabetes can be prevented or delayed through the instigation of lifestyle modification and drugs such as metformin and orlistat [3]) Physical excerise and weight loss are amongst the most effective methods for preventing the onset of diabetes [3] and a large randomised study concluded that lifestyle intervention was more effective that metformin [4]. However lifestyle modification is often found to be difficult to sustain by obese patients.

In treating type 2 diabetes, main aims are to return metabolic disturbances to normal, achieve good glycemic control and assist with weight management. Dietary management in diabetic patients is particularly important, in order to reduce the cardiovascular risks associated with central obesity. Type 2 diabetic patients need to restrict carbohydrate and total calorific intake and eat foods of low glycemic index, to reduce the post prandial rise in blood glucose. [5] When dietary management is not successful, pharmacological intervention is added, including anti-diabetic drugs to prevent hyperglycaemia, ACE inhibitors to treat hypertension and statins or fibrates to treat hyperlipidaemia. [1]

Metformin is recommended as first line treatment in type 2 diabetic patients. When this fails, other agents are added to provide combination therapy. The majority of type 2 diabetic patients require combination therapy, because monotherapy with metformin usually only maintains good metabolic control in the short term. Treatments which can be added include sulphonylureas, acarbose, glucagon-like peptide-1 (GLP-1) analogues, thiazolidinediones, glinides, or insulin. [6]

In conclusion, a multi-strategy approach is used in the management of an obese diabetic patient. Therapy focuses on weight reduction, which is imperative as it simultaneously improves glycemic control and vascular risk factors, but often includes pharmacological treatment to reduce hyperglycemia and correct vascular risk factors. [1]

Key references

[1] A.J. Scheen. Treatment of diabetes in patients with severe obesity. Biomed Pharmacother. Volume 54, Issue 2, March 2000, Pages 74-79

[2] Chaputy JP and Tremblay A. Current and novel approaches to the drug therapy of obesity. Eur J Clin Pharmacol. 2006; 62

[3] Jermendy G. Can type 2 diabetes mellitus be considered preventable? Diabetess res clin pr. 2005; 68, S73-S81

[4] Diabetes Prevention Program Research Group, Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin, N. Engl. J. Med. 346 (2002) 393–403.

[5] Lean MEJ, Powrie JK, Anderson AS, et al. Obesity, weight loss and prognosis in type 2 diabetes. Diabetic Med. 1990; 7:228-233.

[6] Monami M, Lamanna C, Marchionni N et al. Comparison of different drugs as add-on treatments to metformin in type 2 diabetes: a meta-analysis. Diabetes Res Clin Pr. 2008; 79: 196–203.

References

  1. First Author and Second Author, "The perfect reference for Subpart 1," Fake Journal of Neuroendocrinology 36:2 (2015) pp. 36-52.
  2. First Author and Second Author, "Another perfect reference for Subpart 1," Fake Journal of Neuroendocrinology 25:2 (2009) pp. 62-99.
  3. "Part 2," Appetite and obesity. 2006. Retrieved July 21, 2009 from http://www.appetiteandobesity.org/part2.html