Quantile: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Boris Tsirelson
mNo edit summary
imported>Boris Tsirelson
(→‎Definition: range of alpha)
Line 29: Line 29:


For a real random variable <math>X</math>
For a real random variable <math>X</math>
and a real number <math>\alpha</math>,
and a real number <math>\alpha</math> (<math>0<\alpha<1</math>),
a real number <math> X_\alpha </math>
a real number <math> X_\alpha </math>
is an <math>\alpha</math>-quantile if and only if
is an <math>\alpha</math>-quantile if and only if

Revision as of 13:02, 13 December 2009

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.

Quantiles are statistical parameters that divide the range of a random variable into two parts — values less than it and values greater than it — according to a given probability.
More precisely, an α-quantile is a real number Xα such that the random variable is less or equal to it with probability at least α, and greater or equal to it with probability at least (1–α). It is not possible to require equality because the probability of α may be positive. On the other hand, Xα may not be uniquely determined because of gaps in the range of the random variable.

In descriptive statistics, some frequently used quantiles have names of their own:
An α-quantile is

  • a median for
  • a (first) quartile for and
    a third quartile for
  • a kth decile for
  • a kth percentile for

Moreover, for statistical tests the critical values (used to determine whether a result is significant or not) are quantiles of the test statistic.

Definition

For a real random variable and a real number (), a real number is an -quantile if and only if

Remark:
At least one of the inequalities is strict if . and equality holds in both cases if .

Quantiles and the distribution function

Essentially, quantiles are the values of the inverse function to the (cumulative) distribution function, defined as ,
with two exceptions:

  • F is monotone, but not strictly monotone.
    There may be (at most countably many) values for which the is a closed interval.
    In this case every element of that interval is an α-quantile.
    (For all values in the interior of the interval equality holds in both cases).
  • The range of F may have (at most countably many) gaps (discontinuities).
    For values in one of these gaps is empty, but the quantile is unique.
    (These gaps correspond to those values Xα that occur with positive probability.)