Matter (chemistry): Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Anthony.Sebastian
(add ref)
imported>Anthony.Sebastian
No edit summary
Line 4: Line 4:
From the perspective of [[classical mechanics]], or more specifically, Newtonian mechanics, chemists describe '''matter''' as anything that occupies space and has [[mass]]. We know little else but matter and light when we view the world we live in with our native senses, matter seemingly substantial, light seemingly something different from matter.
From the perspective of [[classical mechanics]], or more specifically, Newtonian mechanics, chemists describe '''matter''' as anything that occupies space and has [[mass]]. We know little else but matter and light when we view the world we live in with our native senses, matter seemingly substantial, light seemingly something different from matter.


From the classical chemistry perspective of matter as space-occupying mass, matter includes the [[Atoms and Molecules|subatomic particles]] that scientists can discern as having physical extension and mass (e.g., [[proton]]s, [[neutron]]s, [[quark]]s), all the [[chemical elements]], also called [[elementary substance]]s &mdash; "''the substances from which everything tangible is made,''"<ref name=atkinsperking>{{cite book|author=P.W. Atkins PW|title=The Periodic Kingdom: A Journey into the Land of the Chemical Elements|edition|publisher=Basic Books|year=1995|id=ISBN 0-465-07265-0}} [http://www.questia.com/read/91054371 Full-Text] (See page 3)</ref> &mdash; and all the 'compounds' and 'mixtures' chemical elements make up.<ref><font face="Gill Sans MT"><u>Note:</u>The questions whether matter has substance or not, whether it qualifies as 'material' at core, remain viable and vital among scientists and philosophers of science. In their book, ''The Matter Myth'', Paul Davies and John Gribbon state:</font>
From the classical chemistry perspective of matter as space-occupying mass, matter includes the [[Atoms and Molecules|subatomic particles]] that scientists can discern as having physical extension and mass (e.g., [[proton]]s, [[neutron]]s, [[quark]]s), all the [[chemical elements]], also called [[elementary substance]]s &mdash; "''the substances from which everything tangible is made,''"<ref name=atkinsperking>{{cite book|author=P.W. Atkins PW|title=The Periodic Kingdom: A Journey into the Land of the Chemical Elements|edition|publisher=Basic Books|year=1995|id=ISBN 0-465-07265-0}} [http://www.questia.com/read/91054371 Full-Text] (See page 3)</ref> &mdash; and all the 'compounds' and 'mixtures' chemical elements make up.<ref><u>Note:</u>The questions whether matter has substance or not, whether it qualifies as 'material' at core, remain viable and vital among scientists and philosophers of science. In their book, ''The Matter Myth'', Paul Davies and John Gribbon state:


<p style="margin-left: 2.0%; margin-right: 6%; font-size: 1.0em; font-family: Gill Sans MT, Trebuchet MS;"> Quantum physics undermines materialism because it reveals that matter has far less "substance" than we might believe….matter as such has been demoted from its central role, to be replaced by concepts such as organization, complexity and information. <ref name=daviesmatter>Davies PCW, Gribbin JR. (2007) [http://books.simonandschuster.com/Matter-Myth/Paul-Davies/9780743290913 ''The Matter Myth: Dramatic Discoveries That Challenge Our Understanding of Physical Reality''.] Simon & Schuster: New York.  ISBN 9780743290913 (pbk). Preview book online at Google Books [http://books.google.com/books?id=vlmEIGiZ0g4C here.]</ref>
<p style="margin-left: 2.0%; margin-right: 6%; font-size: 1.0em; font-family: Gill Sans MT, Trebuchet MS;"> Quantum physics undermines materialism because it reveals that matter has far less "substance" than we might believe….matter as such has been demoted from its central role, to be replaced by concepts such as organization, complexity and information. <ref name=daviesmatter>Davies PCW, Gribbin JR. (2007) [http://books.simonandschuster.com/Matter-Myth/Paul-Davies/9780743290913 ''The Matter Myth: Dramatic Discoveries That Challenge Our Understanding of Physical Reality''.] Simon & Schuster: New York.  ISBN 9780743290913 (pbk). </ref>


Chemists do not ignore the fact that matter has structure both at the subatomic level, and at the atomic and supra-atomic level. They understand that facts at the former level help explain facts at the latter, for example, that the electrons of atoms play an essential in determining chemical reactivity.
Chemists do not ignore the fact that matter has structure both at the subatomic level, and at the atomic and supra-atomic level. They understand that facts at the former level help explain facts at the latter, for example, that the electrons of atoms play an essential in determining chemical reactivity.

Revision as of 19:24, 13 July 2010

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
Addendum [?]
 
This editable Main Article is under development and subject to a disclaimer.
See also: Matter

From the perspective of classical mechanics, or more specifically, Newtonian mechanics, chemists describe matter as anything that occupies space and has mass. We know little else but matter and light when we view the world we live in with our native senses, matter seemingly substantial, light seemingly something different from matter.

From the classical chemistry perspective of matter as space-occupying mass, matter includes the subatomic particles that scientists can discern as having physical extension and mass (e.g., protons, neutrons, quarks), all the chemical elements, also called elementary substances — "the substances from which everything tangible is made,"[1] — and all the 'compounds' and 'mixtures' chemical elements make up.Cite error: Closing </ref> missing for <ref> tag

Chemists do not ignore the fact that matter has structure both at the subatomic level, and at the atomic and supra-atomic level. They understand that facts at the former level help explain facts at the latter, for example, that the electrons of atoms play an essential in determining chemical reactivity.

From the perspective of classical chemistry, informed by quantum or nuclear chemistry, all matter consists of chemical elements, either uncombined with other elements (e.g., pure gold), or bonded each element with itself (e.g., dioxygen [O2), or various combinations and proportions of chemical elements of differing species in organized as 'compounds' (e.g., salts such as sodium chloride [NaCl], molecules of DNA) or as 'mixtures' (e.g., a solution of glucose in water, an alloy of copper and tin).

A minimal account of matter from the chemist´s classical perspective requires discussion of the meanings of the terms 'thing' (or 'anything' or 'something' or 'everything'), 'mass', 'substance', 'chemical elements', 'molecules', 'ions','compounds', and 'mixtures'. This article continues with that discussion.

This article will use the word 'object' generically to refer to something that occupies space and has mass, from a simplest bit or unit of matter, to a tangible sample of matter — matter from a chemist's perspective.

Overview

Thing

Chemists define matter as anything (any thing) that occupies space and has mass. They do not, in conjunction, define thing, presumably because they assume common knowledge of what the word 'thing' means. Indeed, semantic linguists have discovered that the word 'thing' has a primary meaning not definable without using words whose definitions ultimately require the word 'thing'. They find that unlike most words in the English lexicon, the word 'thing' occurs universally among the Earth's languages, though not universally pronounced as pronounced in English. 'Thing' qualifies as one of approximately 60 additional universal semantic primitives, or semantic primes, which, though themselves indefinable, serve as the basic set of words for defining all the other words in the lexicon.[2]

Though semantically primitive, 'thing' still has meaning, a meaning a child learns from the way its elders use it, the word's origin going back to the deep-time beginnings of human speech, however prononced then. A child hears his English-speaking parents frequently uttering 'thing' in reference to what we would call material objects: "This drawer has too many things in it", "Give me that thing before you hurt yourself", "Put your things away".

We would understand, then, that anything that occupies space and has mass represents matter, providing we know the meaning of the words 'occupy', 'space', and 'mass'. A semanticist might readily define the first two, 'occupy' and 'space', in terms of semantic primitives, but not so readily the third, 'mass', considered in the next section.

Mass

See: Mass

Mass gives a measure of the quantity of matter in an object, expressed in kilograms (kg), a basic unit of the International System of Units (SI units). Three related measures of mass exist, referred to as 'inertial mass', 'passive gravitational mass', and 'active gravitational mass'. Physicists have established that the three measures give equivalent values despite their different conceptual bases.

Inertial mass relates to a quantity of matter's resistance to motion in response to an applied force, resistance measured in terms of the degree of acceleration it undergoes in response to the applied force. For a given force, an object with a larger mass accelerates more slowly than an object with a smaller mass. For an iron block to achieve the same acceleration of a wood block requires a larger force than that acting on the wood block. Newton´s Second Law of Motion formulates the mass: force equals mass times acceleration, F=ma, mass expressed in kilograms, force expressed in newtons, and acceleration expressed in meters per second per second. From the chemist´s Newtonian perspective, one cannot create mass or destroy it, consequent to the law of conservation of mass.[3]

Passive gravitational mass gives a measure of the quantity of matter in virtue of its reference to the property of an object to react to a gravitational field, that is, to react by attraction to another mass generating a mass-attracting force, a reaction which Newton called gravitation. The magnitude of the force attracting the object measures its weight, which increases with larger attracting masses, but the object´s mass remains constant, indicating no fixed weight for any given quantity of matter in an object.

Active gravitational mass gives a measure of the quantity of matter in virtue of its reference to the property of an object to create a field of force surrounding it that attracts another object — its property of creating a so-called gravitational field.

The equivalence of inertial mass and passive gravitational mass derives from Newton´s law of universal gravitation and the observation that different masses accelerate equally when let loose from the same height in a given gravitational field. The equivalence of passive and active gravitational mass derives both from Newton´s law of universal gravitation, Newton´s law of action and reaction,[4] and the observation that one cannot shield an object from the force of gravity. The derivations are the provenance of physics.[5]

Three points to note:

  1. An object´s mass gives a measure of the quantity of matter comprising the object;
  2. Objects have the same mass whether measured as inertial, passive, or gravitational mass;
  3. Einstein´s theories of special and general relativity modify the Newtonian concept of mass, which however give a useful measure of mass for most purposes in general chemistry.[3]

Substances

Chemistry conceptualizes matter as consisting of distinguishable types, referred to as 'substances'. [6] Examples of substances include such commonly recognized space-occupying masses as water in a glass container, the glass container itself, copper wire, a gem of pure diamond, air enclosed in a balloon, atoms, and molecules.

Different substances have different properties, either physical or chemical properties, depending on whether or not testing for the property involves the formation of another substance or substances. They may also exist in different 'states', or 'phases', solid, liquid, and gaseous the most familiar.

All substances fall under two generic categories, 'pure substances' and 'mixtures'. Chemists classify as the quintessentially pure substances the chemical elements, types of matter composed solely of a single species of atom, such as the copper atoms fashioned into copper wire, the carbon atoms comprising a diamond gem, or iron atoms in a chunk of purified iron. Ninety-four different species of atoms occur naturally on Earth, each collection, or sample, of which that consists solely of atoms of a single species constitutes a pure substance of the type of matter referred to as a chemical element, or elementary substance.

Compounds

The atoms of two or more different chemical elements potentially can bind to each other, in constant proportions, by any one of a variety of types of chemical bonds, forming in the process new types of pure substances referred to as 'compounds'. Water exemplifies a compound, composed of units of hydrogen and oxygen atoms tightly bonded, in the same proportion per bonded unit particle, in this case, two hydrogen atoms and one oxygen atom per unit particle of compound, expressed in chemical formula as H2O. Chemists have identified the bonds in a unit particle of the water compound as so-called covalent bonds, a type of bond that involves electron sharing between the two hydrogen atoms and the oxygen atom, and refer to the unit particle as a molecule. Chemists express quantities of H2O with a variety of measures of mass, such as kilograms, a basic quantitative unit in the International System of Units (SI units), among six other basic quantitative units, and as moles, defined in terms of the number of atoms of a specified isotope of carbon in a specified quantity of isotope expresed in kilograms.

Mixtures

References and notes cited in text as superscripts

  1. P.W. Atkins PW (1995). The Periodic Kingdom: A Journey into the Land of the Chemical Elements. Basic Books. ISBN 0-465-07265-0.  Full-Text (See page 3)
  2. Wierzbicka A. (1996) Semantics: Primes and Universals. Oxford University Press. ISBN 0198700024. Publisher’s website’s description of book Professor Wierzbicka’s faculty webpage Excerpts from Chapters 1 and 2
  3. 3.0 3.1 Note: If one takes Einstein´s theory of special relativity into consideration, as a more accurate description of reality, mass increases as its velocity increases, hardly detectable as a rocket reaches Earth escape velocity, but hugely as the rocket approaches the speed of light. The theory of special relativity also predicts that mass need not obey the law of conservation of mass, because mass and energy exhibit two manifestations of the same thing, potentially enabling conversion of mass to energy, as in the nuclear reactions involved in generation of atomic energy, or energy to mass, as in the generation of hydrogen atoms from the energy released by the Big Bang that originated our universe.
  4. The law of action and reaction states that two interacting objects apply equal forces to one another, equal in magnitude and opposite in direction — as in two colliding billiard balls.
  5. Dunsby P. Mass in Newtonian Theory. Online course on relativity: Chapter 5.
    • An especially lucid, if somewhat technical, demonstration of the equivalances of the three concepts of mass.
  6. Hoffman J, Rosenkrantz G. (1996) Substance: It Nature and Existence. Routledge: London. ISBN 978-0-415-14032-4 (pbk). 240 pp. | Introduction & part of chapter 1 readable online free at publisher's website. | Full-Text online available with subscription to Questia Online Library | Google Books Limited Preview (through p54, with occasional pages missing).