Moore's law: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Aleksander Stos
m (image cleanup)
imported>Pat Palmer
m (Moore's Law moved to Moore's law: No reason I can think of why "law" needs to be capitalized.)

Revision as of 00:36, 9 May 2007


Moore's Law is the empirical observation that the transistor density of integrated circuits, with respect to minimum component cost, doubles every 24 months[1]. It is attributed to Gordon E. Moore[2], a co-founder of Intel. Moore's statement is in his publication "Cramming more components onto integrated circuits", Electronics Magazine 19 April 1965[1]:

The complexity for minimum component costs has increased at a rate of roughly a factor of two per year ... Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years. That means by 1975, the number of components per integrated circuit for minimum cost will be 65,000. I believe that such a large circuit can be built on a single wafer

Under the assumption that chip 'complexity' is proportional to the number of transistors, regardless of what they do, the law has largely held true to date. However, as the per-transistor complexity is less in large RAM cache arrays than in execution units, the validity of Moore's Law may be more questionable. Moore's observation was named a 'law' by the Caltech professor and VLSI pioneer Carver Mead[1].

Moore may have heard Douglas Engelbart, a co-inventor of the mechanical computer mouse, discuss the projected downscaling of integrated circuit size in a 1960 lecture.[3] In 1975, Moore projected a doubling only every two years. He is adamant that he never said "every 18 months", but that is how it has been quoted. The SEMATECH roadmap follows a 24 month cycle. In April 2005, Intel offered $10,000 for a copy of the original Electronics Magazine. [4]

Formulations of Moore's Law

The most popular formulation is of the doubling of the number of transistors on integrated circuits (a rough measure of computer processing power) every 18 months. At the end of the 1970s, Moore's Law became known as the limit for the number of transistors on the most complex chips. However, it is also common to use it to refer to the rapidly continuing advance in computing power per unit cost. A similar law has held for hard disk storage cost per unit of information. The rate of progression in disk storage over the past decades has actually sped up more than once, corresponding to the utilization of error correcting codes, the magnetoresistive effect and the giant magnetoresistive effect. The current rate of increase in hard drive capacity is roughly similar to the rate of increase in transistor count and has been dubbed Kryder's Law. However, recent trends show that this rate is falling, and has not been met for the last three years. Another version states that RAM storage capacity increases at the same rate as processing power. However, memory speeds have not increased as fast as CPU speeds in recent years, leading to a heavy reliance on caching in current computer systems.

An industry driver

Although Moore's Law was initially an observation and forecast, the more widely it became accepted, the more it served as a goal for an entire industry. This drove both marketing and engineering departments of semiconductor manufacturers to focus enormous energy aiming for the increase in processing power that it was presumed one or more of their competitors would soon attain. In this regard, it can be viewed as a self-fulfilling prophecy. The implications of Moore's Law for computer component suppliers are significant. A typical major design project (such as an all-new CPU or hard drive) takes 2-5 years to become ready for production. As a consequence, component manufacturers face enormous timescale pressures—just a few weeks of delay can mean the difference between success and massive losses. Expressed as "a doubling every 18 months", Moore's Law suggests the phenomenal progress of technology in recent years. Expressed on a shorter timescale; however, Moore's Law equates to an average performance improvement in the industry as a whole of over 1% per week. For a manufacturer in the competitive CPU market, a new product that is expected to take three years to develop and is just two or three months late is 10-15% slower, bulkier, or lower in storage capacity than competing products, and is usually unsellable.

Future trends

As of 2006, PC processors are fabricated at the 90 nm level and 65nm chips are just being rolled out by Intel (Pentium D and Intel Core). A decade ago, chips were built at a 500nm level. Companies are working on using nanotechnology to solve the complex engineering problems involved in producing chips at the 45nm, 30nm, and even smaller levels—a process that will postpone the industry meeting the limits of Moore's Law. Recent computer industry technology 'roadmaps' predict (as of 2001) that Moore's Law will continue for several chip generations. Depending on the doubling time used in the calculations, this could mean up to a 100-fold increase in transistor counts on a chip in a decade. The semiconductor industry technology roadmap uses a three-year doubling time for microprocessors, leading to about nine-fold increase in a decade. In early 2006, IBM researchers announced that they had developed a technique to print circuitry only 29.9nm wide using deep-ultraviolet (DUV, 193nm) optical lithography. IBM claims that this technique may allow chipmakers to use current methods for seven years while continuing to achieve results predicted by Moore's Law. New methods for smaller circuits are expected to be much more expensive.

Since the rapid exponential improvement could (in theory) put 100GHz personal computers in every home and 20GHz devices in every pocket, some commentators have speculated that sooner or later computers will meet or exceed any conceivable need for computation. This is only true for some problems—there are others where exponential increases in processing power are matched or exceeded by increases in complexity as the problem size increases. See computational complexity theory and complexity classes P and NP for a discussion of such problems, which are common in applications such as scheduling.

The exponential increase in frequency of operation as the only method of increasing computation speed is misleading. What matters is the exponential increase in useful work (or instructions) executed per unit time. In fact, newer processors are being made at lower clock speeds, with focus on larger caches and multiple computing cores. The reason is that higher clock speeds correspond to exponential increases in temperature, so it becomes almost impossible to produce a CPU that runs reliably at faster than about 4.3GHz.

Extrapolation partly based on Moore's Law has led futurologists such as Vernor Vinge, Bruce Sterling and Ray Kurzweil to speculate about a technological singularity. However, in April 2005, Gordon Moore himself stated that the law may not hold for much longer, as transistors might reach the limits of miniaturization at atomic levels.

In terms of size [of transistor] you can see that we're approaching the size of atoms which is a fundamental barrier, but it'll be two or three generations before we get that far—but that's as far out as we've ever been able to see. We have another 10 to 20 years before we reach a fundamental limit. By then they'll be able to make bigger chips and have transistor budgets in the billions.[5]

While this time horizon for Moore's Law scaling is possible, it does not come without engineering challenges. One of the major challenges in integrated circuits that use nanoscale transistors is increase in parameter variation and leakage currents. Because of these, the design margins available for predictive design is becoming harder, and such systems dissipate considerable power even when not switching. Adaptive and statistical design along with leakage power reduction is critical to sustain scaling of CMOS.[6]. Other challenges include:

  1. controlling parasitic resistance and capacitance in transistors,
  2. reducing resistance and capacitance in electrical interconnects,
  3. maintaining proper transistor electrostatics that allow the gate terminal to control the ON/OFF behavior,
  4. coping with the increasing effect of line edge roughness,
  5. Dopant fluctuations,
  6. System level power delivery,
  7. Thermal design to effectively handle the dissipation of delivered power, and
  8. continuing to reduce the cost of manufacturing the overall system.


Kurzweil projects that a continuation of Moore's Law until 2019 will result in transistor features just a few atoms in width. Although this means that the strategy of ever finer photolithography will have run its course, he speculates that this does not mean the end of Moore's Law:

Moore's Law of Integrated Circuits was not the first, but the fifth paradigm to provide accelerating price-performance. Computing devices have been consistently multiplying in power (per unit of time) from the mechanical calculating devices used in the 1890 US Census, to Turing's relay-based 'Robinson' machine that cracked the Nazi enigma code, to the CBS vacuum tube computer that predicted the election of Eisenhower, to the transistor-based machines used in the first space launches, to the integrated-circuit-based personal [computers].[7]

Thus, Kurzweil conjectures that it is likely that some new type of technology will replace current integrated-circuit technology, and that Moore's Law will hold true long after 2020. He believes that the exponential growth of Moore's Law will continue beyond the use of integrated circuits into technologies that will lead to the technological singularity. The Law of Accelerating Returns described by Ray Kurzweil has in many ways altered the public's perception of Moore's Law. It is a common (but mistaken) belief that Moore's Law makes predictions regarding all forms of technology, when it actually only concerns semiconductor circuits. Many futurists still use the term 'Moore's Law' to describe ideas like those of Kurzweil.

Krauss and Starkman announced an ultimate limit of around 600 years in their paper "Universal Limits of Computation", based on rigorous estimation of total information-processing capacity of any system in the Universe. Then again, the law has often met obstacles that appeared insurmountable, before soon surmounting them. In that sense, Moore says he now sees his law as more beautiful than he had realised. "Moore's Law is a violation of Murphy's Law. Everything gets better and better." [8]

Other considerations

Not all aspects of computing technology develop in capacities and speed according to Moore's Law. Random Access Memory (RAM) speeds and hard drive seek times improve at best a few percentages per year. As the capacity of RAM and hard drives is increasing much faster than their access speed, intelligent use of their capacity becomes more and more important. It now often makes sense to trade space for time, such as by precomputing indexes and storing them in ways that facilitate rapid access, at the cost of using more disk and memory space: space is becoming relatively cheaper. Another sometimes misunderstood point is that exponentially improved hardware does not necessarily imply exponentially improved software to go with it. The productivity of software developers most assuredly does not increase exponentially with the improvement in hardware, but by most measures has increased only slowly and fitfully over the decades. Software tends to get larger and more complicated over time, and Wirth's law even states that "Software gets slower faster than hardware gets faster". Moreover, there is popular misconception that the clock speed of a processor determines its speed, also known as the Megahertz Myth. This actually also depends on the number of instructions per tick which can be executed (as well as the complexity of each instruction, see MIPS, RISC and CISC), and so the clock speed can only be used for comparison between two identical circuits. Of course, other factors must be taken into consideration such as the bus size and speed of the peripherals. Therefore, most popular evaluations of "computer speed" are inherently biased, without an understanding of the underlying technology. This is especially true now that popular manufacturers play with public perception of speed, focusing on advertising the clock rate of new products. [9]

As the cost to the consumer of computer power falls, the cost for producers is rising: R&D, manufacturing, and test costs have increased with each new generation of chips. As the cost of semiconductor equipment is expected to continue increasing, manufacturers must sell more and more chips to remain profitable. (The cost to tape-out a chip at 0.18μm was roughly $300,000 USD. The cost to tape-out a chip at 90 nm exceeds $750,000 USD, and is expected to exceed $1.0M USD for 65nm) In recent years, analysts have observed a decline in the number of "design starts" at advanced process nodes (0.13μm and below.) While these observations were made in the period after the 2000 economic downturn, the decline may be evidence that traditional manufacturers in the long-term global market cannot economically sustain Moore's Law. However, Intel was reported in 2005 as stating that the downsizing of silicon chips with good economics can continue for the next decade [10]. Intel's prediction of increasing use of materials other than silicon, was verified in mid-2006, as was its intent of using trigate transistors around 2009. Researchers from IBM and Georgia Tech created a new speed record when they ran a silicon/germanium helium supercooled chip at 500GHz [11]. The chip operated above 500GHz at 4.5K (451 degrees below zero Fahrenheit) [12] and simulations showed that it could run at 1THz (1,000GHz).

References and notes

  1. 1.0 1.1 1.2 Excerpts from A Conversation with Gordon Moore: Moore’s Law (PDF) 1. Intel Corporation (2005). Retrieved on May 2, 2006.
  2. Not to be confused with another G.E. Moore, the philosopher George Edward Moore, the creator of Moore's paradox.
  3. NY Times article April 17 2005
  4. Michael Kanellos (2005-04-12). $10,000 reward for Moore's Law original. CNET News.com. Retrieved on June 24, 2006.
  5. Manek Dubash (2005-04-13). Moore's Law is dead, says Gordon Moore. Techworld. Retrieved on June 24, 2006.
  6. Leakage in Nanometer CMOS Technologies
  7. Ray Kurzweil (2001-03-07). The Law of Accelerating Returns. KurzweilAI.net. Retrieved on June 24, 2006.
  8. Moore's Law at 40 - Happy birthday. The Economist (2005-03-23). Retrieved on June 24, 2006.
  9. Matthew Broersma (2006-06-24). Intel, Aberdeen attack AMD speed ratings. ZDNet UK. Retrieved on June 24, 2006.
  10. New life for Moores Law. CNET News.com (2006-04-19). Retrieved on June 24, 2006.
  11. Chilly chip shatters speed record. BBC Online (2006-06-20). Retrieved on June 24, 2006.
  12. Georgia Tech/IBM Announce New Chip Speed Record. Georgia Institute of Technology (2006-06-20). Retrieved on June 24, 2006.

External links

Articles

Data

  • Intel (IA-32) CPU Speeds since 1994. Increases in recent years have seemed to slow down (in terms of percentage increase per year).

FAQs