Renewable energy: Difference between revisions
imported>D. Matt Innis m (Renewable energy development moved to Renewable energy: move to merge with Renewable energy) |
imported>Milton Beychok m (Revision and rationalization of the merged articile done except for section on third generation articles. See Talk page for explanation.) |
||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
{{TOC|right}} | |||
'''Renewable energy''' is derived from natural processes that are regularly replenished. Renewable energy sources and technologies include [[solar power]], [[wind power]], [[Hydroelectric power|hydropower]], [[geothermal energy]], [[biomass]], and [[biofuel]]s. Each of these has unique characteristics which influence how and where they are used.<ref>[http://www.iea.org/textbase/nppdf/free/2000/Renew_main2003.pdf Renewable energy... into the mainstream] From the IEA website</ref> | |||
About 18% of global final energy consumption comes from renewables, with 13% from traditional [[biomass]] (which is mainly used for [[heating]]) and 3% from [[hydroelectric power]]. The share of renewables in [[electricity generation]] is around 18%, with 15% of global electricity coming from hydroelectricity and 3.4% from new renewable energy sources.<ref name=REN21-2007>[http://www.ren21.net/pdf/RE2007_Global_Status_Report.pdf Renewables 2007 Global Status Report] From website of the [[Renewable Energy Policy Network for the 21st Century]] (REN21)</ref> | |||
[http://www. | |||
[[Renewable energy | According to the [[International Energy Agency]] (IEA), renewable energy technologies can play an important role in addressing the challenges of moving towards clean, reliable, secure and competitive energy supply. Many countries have made progress in promoting renewables in their energy mix, but obstacles remain and, says the IEA, greater efforts are needed.<ref>[http://www.iea.org/g8/2008/G8_Renewables.pdf Deploying Renewables] From the IEA website</ref> | ||
==Rationale for renewable energy== | |||
Renewable energy technologies are essential contributors to the energy supply portfolio, as they contribute to world energy security, reduce dependency on [[fossil fuel]]s, and provide opportunities for mitigating [[greenhouse gas]] emissions (namely [[carbon dioxide]]). The fuels that produce the most emissions of carbon dioxide are fossil fuels and they can be replaced by renewable sources of energy that produce much lower carbon dioxide emissions. | |||
The International Energy Agency estimates that nearly 50% of global electricity supplies will need to come from renewable energy sources in order to halve carbon dioxide emissions by 2050. | |||
==Renewable energy development== | |||
The term ''renewable energy'' covers a number of sources and technologies at different stages of commercialization. The [[International Energy Agency]] (IEA) has defined three generations of renewable energy technologies, reaching back over 100 years: | The term ''renewable energy'' covers a number of sources and technologies at different stages of commercialization. The [[International Energy Agency]] (IEA) has defined three generations of renewable energy technologies, reaching back over 100 years: | ||
*''First-generation technologies'' emerged from the [[industrial revolution]] at the end of the 19th century and include hydropower, biomass power, and geothermal power and heat. These technologies are quite widely used.<ref name= | *''First-generation technologies'' emerged from the [[industrial revolution]] at the end of the 19th century and include hydropower, biomass power, and geothermal power and heat. These technologies are quite widely used.<ref name=IEA2006>[http://www.iea.org/textbase/papers/2006/renewable_factsheet.pdf ''Renewables in global energy supply: An IEA facts sheet''] From the IEA website.</ref> | ||
*''Second-generation technologies'' include solar heating and cooling, wind power, modern forms of bioenergy, and solar photovoltaics. These are now entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s. Initial investment was prompted by [[energy security]] concerns linked to the [[1973 oil crisis|oil crises]] of the 1970s but the primary appeal of these technologies is due, at least in part, to environmental benefits. Many of the technologies reflect significant advancements in materials of construction.<ref name= | *''Second-generation technologies'' include solar heating and cooling, wind power, modern forms of bioenergy, and solar photovoltaics. These are now entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s. Initial investment was prompted by [[energy security]] concerns linked to the [[1973 oil crisis|oil crises]] of the 1970s but the primary appeal of these technologies is due, at least in part, to environmental benefits. Many of the technologies reflect significant advancements in materials of construction.<ref name=IEA2006/> | ||
*''Third-generation technologies'' are still under development and include advanced biomass gasification, biorefinery technologies, concentrating solar thermal power, hot dry rock (HDR) geothermal power, and ocean energy. Advances in [[nanotechnology]] may also play a major role.<ref name= | *''Third-generation technologies'' are still under development and include advanced biomass gasification, biorefinery technologies, concentrating solar thermal power, hot dry rock (HDR) geothermal power, and ocean energy. Advances in [[nanotechnology]] may also play a major role.<ref name=IEA2006/> | ||
First-generation technologies are well established, second-generation technologies are emerging technologies, and third-generation technologies heavily depend on long-term R&D commitments, where the public sector has a role to play.<ref name= | First-generation technologies are well established, second-generation technologies are emerging technologies, and third-generation technologies heavily depend on long-term R&D commitments, where the public sector has a role to play.<ref name=IEA2006/> | ||
==First-generation technologies== | ===First-generation technologies=== | ||
First-generation technologies are widely used in locations with an abundance of the appropriate natural resources. Their future use depends on the exploration of the remaining resource potential, particularly in developing countries, and on overcoming challenges related to the environment and social acceptance. | First-generation technologies are widely used in locations with an abundance of the appropriate natural resources. Their future use depends on the exploration of the remaining resource potential, particularly in developing countries, and on overcoming challenges related to the environment and social acceptance. | ||
===Biomass=== | ====Biomass==== | ||
Biomass commonly refers to renewable [[Organic chemistry|organic]] materials such as wood, wood waste, straw, sugar cane, algae, and many other byproducts derived from a variety of [[Agriculture|agricultural]] and [[forestry]] production as well as other sources. Since biomass is derived from [[Plant (organism)|plants]] which were generated by utilizing [[solar energy]] in the [[photosynthesis]] process, it can also be defined as the organic material on [[Earth]] that has stored solar energy in the [[chemical bond]]s of the organic material. | |||
The use of biomass for producing heat and electric power is a fully mature technology which offers a ready disposal mechanism for municipal, agricultural, and industrial organic wastes. However, the use of biomass remained relatively stagnant over the period of 1997 to 2007, even though demand for biomass (mostly wood) continues to grow in many developing countries. One of the problems of biomass is that material directly combusted in cook stoves produces [[pollutant]]s, leading to health and environmental consequences, although improved cook stove programs are alleviating some of these effects. First-generation biomass technologies can be economically competitive, but may still require gaining public acceptance and overcoming small-scale issues.<ref name= | The use of biomass for producing heat and electric power is a fully mature technology which offers a ready disposal mechanism for municipal, agricultural, and industrial organic wastes. However, the use of biomass remained relatively stagnant over the period of 1997 to 2007, even though demand for biomass (mostly wood) continues to grow in many developing countries. One of the problems of biomass is that material directly combusted in cook stoves produces [[pollutant]]s, leading to health and environmental consequences, although improved cook stove programs are alleviating some of these effects. First-generation biomass technologies can be economically competitive, but may still require gaining public acceptance and overcoming small-scale issues.<ref name=IEA2006/> | ||
===Hydroelectricity=== | ====Hydroelectricity==== | ||
{{Image|Three Gorges Dam.jpg|right|350px|Hydroelectric power Three Gorges Dam on Yangtze river in China}} | {{Image|Three Gorges Dam.jpg|right|350px|Hydroelectric power Three Gorges Dam on Yangtze river in China}} | ||
Hydroelectric power plants have the advantage of being long-lived and many existing plants have operated for more than 100 years. Hydropower is also an extremely flexible technology from the perspective of power grid operation. Large hydropower provides one of the lowest cost options in today’s energy market, even compared to fossil fuels and there are no harmful emissions associated with plant operation.<ref name= | Hydroelectric power plants have the advantage of being long-lived and many existing plants have operated for more than 100 years. Hydropower is also an extremely flexible technology from the perspective of power grid operation. Large hydropower provides one of the lowest cost options in today’s energy market, even compared to fossil fuels and there are no harmful emissions associated with plant operation.<ref name=IEA2006/> | ||
Hydroelectric power is currently the world’s largest installed renewable source of electricity, supplying about 17% of total electricity in 2005.<ref> | Hydroelectric power is currently the world’s largest installed renewable source of electricity, supplying about 17% of total electricity in 2005.<ref>[http://www.stanford.edu/group/efmh/jacobson/EnergyEnvRev1008.pdf Review of Solutions to Global Warming, Air Pollution, and Energy Security] Mark Z. Jacobson (2009). From the website of the [[Stanford University]] in [[Stanford, California]]</ref> [[China]] is the world's largest producer of hydroelectric power in the world, followed by [[Canada]]. | ||
However, there are several significant social and environmental disadvantages of large-scale hydroelectric power systems: dislocation of people living where the reservoirs are planned | However, there are several significant social and environmental disadvantages of large-scale hydroelectric power systems: dislocation of people living where the reservoirs are planned and disruption of aquatic ecosystems and birdlife.<ref>[http://www.newscientist.com/article.ns?id=dn7046 Hydroelectric power's dirty secret revealed] From the website of ''New Scientist'', 24 February 2005.</ref> Hydroelectric power is now more difficult to site in developed nations because most major sites within these nations are either already being used or may be unavailable for environmental reasons. The areas of greatest hydroelectric growth are the growing economies of [[Asia]]. [[India]] and China are the development leaders; however, other Asian nations are also expanding hydropower. | ||
There is a strong consensus now that countries should adopt an integrated approach towards managing water resources, which would involve planning hydropower development in co-operation with other water-using sectors.<ref name= | There is a strong consensus now that countries should adopt an integrated approach towards managing water resources, which would involve planning hydropower development in co-operation with other water-using sectors.<ref name=IEA2006/> | ||
===Geothermal power and heat=== | ====Geothermal power and heat==== | ||
{{Image|Iceland Geothermal Plant.jpg|right|250px|Geothermal power plant in [[Iceland]]}} | {{Image|Iceland Geothermal Plant.jpg|right|250px|Geothermal power plant in [[Iceland]]}} | ||
Geothermal power plants can operate 24 hours per day, providing [[baseload]] capacity. Estimates for the world potential capacity for geothermal power generation vary widely, ranging from 40 GW by 2020 to as much as 6,000 GW.<ref> | Geothermal power plants can operate 24 hours per day, providing [[baseload]] capacity. Estimates for the world potential capacity for geothermal power generation vary widely, ranging from 40 GW by 2020 to as much as 6,000 GW.<ref>[http://www.geothermal-energy.org/files-15.html "What is Geothermal Potential?"], ''IGA News''. From the website of the International Geothermal Association.</ref><ref name=IPCCGeothermal2008>[http://www.iea-gia.org/documents/FridleifssonetalIPCCGeothermalpaper2008FinalRybach20May08_000.pdf The possible role and contribution of geothermal energy to the mitigation of climate change] From ''Proceedings of IPCC Scoping Meeting on Renewable Energy Sources'', Luebeck, [[Germany]], 20-25 January 2008, p. 59-80.</ref> | ||
Geothermal power capacity grew from around 1 GW in 1975 to almost 10 GW in 2008.<ref name= | Geothermal power capacity grew from around 1 GW in 1975 to almost 10 GW in 2008.<ref name=IPCCGeothermal2008/> The [[United States]] is the world leader in terms of installed capacity, representing 3.1 GW. Other countries with significant installed capacity include the [[Philippines]] (1.9 GW), [[Indonesia]] (1.2 GW), [[Mexico]] (1.0 GW), [[Italy]] (0.8 GW), [[Iceland]] (0.6 GW), [[Japan]] (0.5 GW), and [[New Zealand]] (0.5 GW).<ref name=IPCCGeothermal2008/><ref>[http://www.islandsbanki.is/english/industry-focus/sustainable-energy/research-and-publications/ U.S. Geothermal Energy Market Report 2009] From website of the Islandsbanki, [[Iceland]]</ref> In some countries, geothermal power accounts for a significant share of the total electricity supply, such as in the Philippines, where geothermal represented 17 percent of the total power mix at the end of 2008.<ref>[http://www.reuters.com/article/GCA-GreenBusiness/idUSTRE5A43HC20091105 Philippines targets $2.5 billion geothermal development], Leonora Walet, ''Reuters'', November 5, 2009.</ref> | ||
Geothermal ground source heat pumps represented an estimated 30 gigawatts-thermal (GWth) of installed capacity at the end of 2008, with other direct uses of geothermal heat (i.e., for space heating, agricultural drying and other uses) reaching an estimated 15 GWth. As of 2008, at least 76 countries use geothermal energy in some form. | Geothermal ground source heat pumps represented an estimated 30 gigawatts-thermal (GWth) of installed capacity at the end of 2008, with other direct uses of geothermal heat (i.e., for space heating, agricultural drying and other uses) reaching an estimated 15 GWth. As of 2008, at least 76 countries use geothermal energy in some form. | ||
==Second-generation technologies== | ===Second-generation technologies=== | ||
Markets for second-generation technologies have been strong and growing over the past decade, and these technologies have gone from being a passion for the dedicated few to a major economic sector in countries such as [[Germany]], [[Spain]], the United States, and Japan. Many large industrial companies and financial institutions are involved and the challenge is to broaden the market base for continued growth worldwide.<ref name=IEA2006/> | |||
====Solar Heating==== | |||
[[Solar heating]] systems are a well known second-generation technology and generally consist of [[solar thermal collector]]s, a fluid system to move the heat from the collector to its point of usage, and a reservoir or tank for heat storage. The systems may be used to heat domestic hot water, swimming pools, or homes and businesses. The heat can also be used for industrial process applications or as an energy input for other uses such as solar assisted air conditioning.<ref>[http://www.iea-shc.org/task25/index.html Solar assisted air-conditioning of buildings] From the IEA website.</ref> | |||
In many warmer climates, a solar heating system can provide a very high percentage (50 to 75%) of domestic hot water energy. As of 2009, China has 27 million rooftop solar water heaters.<ref>{{cite book|author=[[Lester R. Brown]]|title=Plan B 4.0: Mobilizing to Save Civilization ([[Earth Policy Institute]])|edition=1st Edition|publisher=W.W. Norton Company|year=2009|pages=p.122|id=ISBN 0-393-07103-0}} Full copy available online [http://www.earthpolicy.org/images/uploads/book_files/pb4book.pdf here]</ref> | |||
===Solar | ====Solar thermal power stations==== | ||
{{Image|Solar Power Plant.png|right|353px|Schematic flow diagram of the SEGS solar power plants}} | |||
[[Solar thermal power]] stations include the 354 MW [[Solar Energy Generating Systems]] power complex in the [[USA]], [[Nevada Solar One]] (USA, 64 MW), [[Andasol 1]] (Spain, 50 MW) and the [[PS10 solar power tower]] (Spain, 11 MW). Many other plants are under construction or planned, mainly in Spain and the USA.<ref name=REN21-2007/> In developing countries, three [[World Bank]] projects for integrated solar thermal and [[combined cycle gas turbine power plant]]s in [[Egypt]], Mexico, and [[Morocco]] have | |||
been approved.<ref name=REN21-2009>[http://www.ren21.net/pdf/RE_GSR_2009_update.pdf Renewables Global Status Report: 2009 Update] From website of the Renewable Energy Network for the 21st Century (REN21)</ref> | |||
== | {|border="0" align="left" | ||
|{{Image|SEGS Troughs.jpg|left|250px|Parabolic trough mirrors in solar power plants}} | |||
|{{Image|SEGS Mojave.jpg|left|225px|Fields of parabolic trough mirrors at the SEGS solar power plants in the Mojave Desert}} | |||
|} | |||
====Photovoltaics==== | |||
Photovoltaic (PV) cells, also called solar cells, convert [[light]] into electricity. In the 1980s and early 1990s, most photovoltaic modules were used to provide small, stand-alone power systems in areas with no electricity distribution system. However, from around 1995, industry efforts have focused increasingly on developing building-integrated photovoltaics and [[photovoltaic power plant]]s for grid-connected applications. | |||
As of October 2009, the largest photovoltaic (PV) power plants in the world are the [[Olmedilla Photovoltaic Park]] (Spain, 60 MW), the [[Puertollano Photovoltaic Park]] (Spain, 50 MW), the [[Moura Photovoltaic Power Plant]] (Portugal, 46 MW), and the [[Waldpolenz Solar Park]] (Germany, 40 MW).<ref name=PV>[http://www.pvresources.com/en/top50pv.php World's largest photovoltaic power] From website of Photovoltaic Resources.com</ref> The largest photovoltaic power plant in North America is the 25 MW [[DeSoto Next Generation Solar Energy Center]] in Florida. The plant consists of over 90,000 solar panels.<ref>[http://www.energyonline.com/Industry/News.aspx?NewsID=7401&FPL_Commissions_DeSoto_Next_Generation_Solar_Energy_Center__ FPL Commissions DeSoto Next Generation Solar Energy Center] ''Energy Online'', October 28, 2009.</ref> | |||
===Wind power=== | At the end of 2008, the cumulative global PV installations reached 15,200 MW.<ref name=REN21-2009/> Photovoltaic production has been doubling every two years, increasing by an average of 48 percent each year since 2002, making it the world’s fastest-growing energy technology. The top five photovoltaic producing countries are Japan, China, Germany, [[Taiwan]], and the United States.<ref>[http://www.earth-policy.org/Indicators/Solar/2007.htm Solar Cell Production Jumps 50 Percent in 2007] From the website of the [[Earth Policy Institute]].</ref> | ||
====Wind power==== | |||
{{Image|WindFarm2.jpg|right|340px|Wind farm turbines in San Gorgonio Pass, Southern California}} | {{Image|WindFarm2.jpg|right|340px|Wind farm turbines in San Gorgonio Pass, Southern California}} | ||
Some of the second-generation renewables, such as wind power, have high potential and have already realized relatively low production costs.<ref>[http://www.earth-policy.org/Books/PB2/pb2ch10.pdf "Stabilizing Climate" (PDF)] in | Some of the second-generation renewables, such as wind power, have high potential and have already realized relatively low production costs.<ref>[http://www.earth-policy.org/Books/PB2/pb2ch10.pdf "Stabilizing Climate" (PDF)] A chapter in: {{cite book|author=Lester R. Brown|title=Plan B 2.0: Rescuing a Planet Under Stress and a Civilization in Trouble|edition=1st Edition|publisher=W.W. Norton Company|year=2006|pages=p. 122|id=ISBN 0-393-06162-0}}</ref><ref name=CleanTech>[http://www.cleantechnology.com.au/pdf/ctf2007slides/CTF2007_CleanEdge.pdf ''The Clean Tech Revolution... the costs of clean energy are declining'']</ref> At the end of 2009, worldwide wind power plant capacity was 157,900 MW, representing an increase of 31 percent during the year,<ref>[http://greeninc.blogs.nytimes.com/2010/02/15/gains-in-global-wind-capacity-reported/ Gains in Global Wind Capacity Reported] From the website of [[The New York Times]], May 27, 2010</ref> and wind power supplied some 1.3% of global electricity consumption.<ref>[http://www.wwindea.org/home/images/stories/pr_statistics2007_210208_red.pdf Wind turbines generate more than 1 % of the global electricity] February 2008. From the website of the [[World Wind Energy Association]] (WWEA)</ref> Wind power is widely used in [[Europe|European]] countries, and more recently in the United States and in Asia.<ref name=GWEC>[http://www.gwec.net/uploads/media/07-02_PR_Global_Statistics_2006.pdf Global wind energy markets continue to boom – 2006 another record year]. From the website of the [[Global Wind Energy Council]] (GWEC)</ref><ref>[http://www.gwec.net/fileadmin/documents/Publications/Global%20Wind%202008%20Report.pdf Global Wind 2008 Report] From the website of the Global Wind Energy Council (GWEC)</ref> Wind power accounts for approximately 19% of electricity generation in [[Denmark]], 11% in Spain and [[Portugal]], and 9% in the [[Republic of Ireland]].<ref>[http://www.ieawind.org/AnnualReports_PDF/2008/2008%20AR_small.pdf IEA Wind Energy: Annual Report 2008] From the website of the IEA</ref> These are some of the largest "wind farms" in the world, as of January 2010: | ||
{| class="wikitable" | {| class="wikitable" | ||
Line 86: | Line 104: | ||
|} | |} | ||
=== | ====Modern forms of bioenergy==== | ||
[[ | {{main|Gasoline}} | ||
Global [[ethanol]] (C<sub>2</sub>H<sub>5</sub>OH) production for transport fuel tripled between 2000 and 2007 from 17 billion to more than 52 billion litres, while [[biodiesel]] expanded more than ten-fold from less than 1 billion to almost 11 billion litres. [[Biofuel]]s provide 1.8% of the world’s transport fuel and recent estimates indicate a continued high growth. The main producing countries for transport biofuels are the United States, [[Brazil]], and the [[European Union]].<ref>[http://www.unep.fr/scp/rpanel/pdf/Assessing_Biofuels_Full_Report.pdf Assessing Biofuels (2009)] From the website of the [[United Nations Environment Programme]]</ref> | |||
The growing ethanol and biodiesel industries are providing jobs in plant construction, operations, and maintenance, mostly in rural communities. According to the Renewable Fuels Association, the ethanol industry created almost 154,000 U.S. jobs in 2005 alone, boosting household income by $5.7 billion. It also contributed about $3.5 billion in tax revenues at the local, state, and federal levels.<ref name=Worldwatch>[http://images1.americanprogress.org/il80web20037/americanenergynow/AmericanEnergy.pdf American energy: The renewable path to energy security (2006)] From the website of the [[Worldwatch Institute]] Center for American Progress</ref> | |||
'''''Ethanol''''' | |||
= | Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from [[sugar cane]], and ethanol now provides 18 percent of the country's automotive fuel. As a result of this and the exploitation of domestic deep water oil sources, Brazil, which for years had to import a large share of the petroleum needed for domestic consumption, recently reached complete self-sufficiency in liquid fuels.<ref>[http://www.renewableenergyaccess.com/rea/news/story?id=44896 America and Brazil Intersect on Ethanol (May 15, 2006)] From the website of RenewableEnergyWorld.com</ref><ref>[http://www.washingtonpost.com/wp-dyn/content/article/2006/04/21/AR2006042100139.html New Rig Brings Brazil Oil Self-Sufficiency (April 21, 2006)] From the website of [[The Washington Post]]</ref> | ||
Most cars on the road today in the United States can run on blends of up to 10% ethanol, and motor vehicle manufacturers already produce vehicles designed to run on much higher ethanol blends. [[Ford Motor Company|Ford]], [[DaimlerChrysler]], and [[General Motors Corporation|General Motors]] are among the automobile companies that sell [[flexible-fuel]] cars, trucks, and minivans that can use gasoline and ethanol blends ranging containing up to 85% ethanol (E85). By mid-2006, there were approximately six million E85-compatible vehicles on U.S. roads. The challenge is to expand the market for biofuels beyond the farm states where they have been most popular. Flexible-fuel vehicles are assisting in this transition because they allow drivers to choose different fuels based on price and availability. The [[Energy Policy Act of 2005]], which calls for 7.5 billion gallons of biofuels to be used annually by 2012, will also help to expand the market.<ref name=Worldwatch/> | |||
'''''Biodiesel''''' | |||
{{main|Biodiesel}} | {{main|Biodiesel}} | ||
Existing diesel engines often can use, without modification, up to 20% biodiesel blends. Other engines can use 100% biodiesel. | Existing diesel engines often can use, without modification, up to 20% biodiesel blends. Other engines can use 100% biodiesel. | ||
Biodiesel is biodegradable, while petroleum diesel is not. Emissions from biodiesel have less environmental impact. | Biodiesel is biodegradable, while petroleum diesel is not. Emissions from biodiesel are said to have less environmental impact. | ||
==Recent growth of renewables== | |||
From the end of 2004 to the end of 2008, solar photovoltaic (PV) capacity increased sixfold to more than 16 gigawatts (GW), wind power capacity increased 250 percent to 121 GW, and total power capacity from new renewables increased 75 percent to 280 GW. During the same period, solar heating capacity doubled to 145 gigawatts-thermal (GWth), while biodiesel production increased sixfold to 12 billion liters per year and ethanol production doubled to 67 billion liters per year.<ref name=REN21-2009/> | |||
== | |||
{| class="wikitable" | {| class="wikitable" | ||
|+Selected | |+Selected renewable energy indicators<ref name=REN21-2009/><ref name=REW2>[http://www.renewableenergyworld.com/rea/news/article/2009/09/renewables-global-status-report-2009-update?cmpid=WNL-Friday-September11-2009 Renewables Global Status Report 2009 Update] From the website of RenewableEnergyWorld.com</ref><ref name=REN21-2006>[http://www.ren21.net/pdf/RE_GSR_2006_update.pdf Renewables Global Status Report: 2006 Update] From website of the Renewable Energy Network for the 21st Century (REN21)</ref> | ||
|- | |- | ||
! | ! Selected global indicators !! 2004 !! 2005 !! 2006 !! 2007 !! 2008 | ||
|- | |- | ||
| | |Annual investment in new renewable capacity|| 30 || 38 || 63 || 104 || 120 billion USD | ||
|- | |||
| Existing renewables power capacity, <br> including large-scale hydro || 895 || 930 || 1,020 || 1,070 || 1,140 GWe | |||
|- | |||
| Existing renewables power capacity, <br> excluding large hydro || 160 || 182 || 207 || 240 || 280 GWe | |||
|- | |||
| Wind power capacity (existing) || 48 || 59 || 74 || 94 || 121 GWe | |||
|- | |||
| Biomass heating || || || || || ~250 GWth | |||
|- | |||
| Solar hot water/ Space heating || 77 || 88 || 105 || 126 || 145 GWth | |||
|- | |- | ||
| | | Geothermal heating || || || || || ~50 GWth | ||
| | |||
| | |||
|- | |- | ||
| | | Ethanol production (annual) || 30.5 || 33 || 39 || 50 || 67 billion liters | ||
|- | |- | ||
| | | Number of countries with policy targets for <br/>renewable energy use || 45 || 49 || || 66 || 73 | ||
|} | |} | ||
Annual percentage growth for 2008 was significant. Wind power grew by 29 percent and grid-connected solar PV by 70 percent. The capacity of utility-scale solar PV plants (larger than 200 kilowatts) tripled during 2008, to 3 GW. Solar hot water grew by 15 percent, and annual ethanol and biodiesel production both grew by 34 percent. Heat and power from biomass and geothermal sources continued to grow, and small hydroelectric power sources increased by about 8 percent.<ref name=REN21-2009/> | |||
In 2008, for the first time, more renewable energy than conventional power capacity was added in both the European Union and United States, demonstrating a "fundamental transition" of the world's energy markets towards renewables, according to a report released by [[REN21]], a global renewable energy policy network based in Paris.<ref name=REW2/> | |||
==References== | ==References== | ||
{{reflist}} |
Revision as of 22:10, 27 May 2010
Renewable energy is derived from natural processes that are regularly replenished. Renewable energy sources and technologies include solar power, wind power, hydropower, geothermal energy, biomass, and biofuels. Each of these has unique characteristics which influence how and where they are used.[1]
About 18% of global final energy consumption comes from renewables, with 13% from traditional biomass (which is mainly used for heating) and 3% from hydroelectric power. The share of renewables in electricity generation is around 18%, with 15% of global electricity coming from hydroelectricity and 3.4% from new renewable energy sources.[2]
According to the International Energy Agency (IEA), renewable energy technologies can play an important role in addressing the challenges of moving towards clean, reliable, secure and competitive energy supply. Many countries have made progress in promoting renewables in their energy mix, but obstacles remain and, says the IEA, greater efforts are needed.[3]
Rationale for renewable energy
Renewable energy technologies are essential contributors to the energy supply portfolio, as they contribute to world energy security, reduce dependency on fossil fuels, and provide opportunities for mitigating greenhouse gas emissions (namely carbon dioxide). The fuels that produce the most emissions of carbon dioxide are fossil fuels and they can be replaced by renewable sources of energy that produce much lower carbon dioxide emissions.
The International Energy Agency estimates that nearly 50% of global electricity supplies will need to come from renewable energy sources in order to halve carbon dioxide emissions by 2050.
Renewable energy development
The term renewable energy covers a number of sources and technologies at different stages of commercialization. The International Energy Agency (IEA) has defined three generations of renewable energy technologies, reaching back over 100 years:
- First-generation technologies emerged from the industrial revolution at the end of the 19th century and include hydropower, biomass power, and geothermal power and heat. These technologies are quite widely used.[4]
- Second-generation technologies include solar heating and cooling, wind power, modern forms of bioenergy, and solar photovoltaics. These are now entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s. Initial investment was prompted by energy security concerns linked to the oil crises of the 1970s but the primary appeal of these technologies is due, at least in part, to environmental benefits. Many of the technologies reflect significant advancements in materials of construction.[4]
- Third-generation technologies are still under development and include advanced biomass gasification, biorefinery technologies, concentrating solar thermal power, hot dry rock (HDR) geothermal power, and ocean energy. Advances in nanotechnology may also play a major role.[4]
First-generation technologies are well established, second-generation technologies are emerging technologies, and third-generation technologies heavily depend on long-term R&D commitments, where the public sector has a role to play.[4]
First-generation technologies
First-generation technologies are widely used in locations with an abundance of the appropriate natural resources. Their future use depends on the exploration of the remaining resource potential, particularly in developing countries, and on overcoming challenges related to the environment and social acceptance.
Biomass
Biomass commonly refers to renewable organic materials such as wood, wood waste, straw, sugar cane, algae, and many other byproducts derived from a variety of agricultural and forestry production as well as other sources. Since biomass is derived from plants which were generated by utilizing solar energy in the photosynthesis process, it can also be defined as the organic material on Earth that has stored solar energy in the chemical bonds of the organic material.
The use of biomass for producing heat and electric power is a fully mature technology which offers a ready disposal mechanism for municipal, agricultural, and industrial organic wastes. However, the use of biomass remained relatively stagnant over the period of 1997 to 2007, even though demand for biomass (mostly wood) continues to grow in many developing countries. One of the problems of biomass is that material directly combusted in cook stoves produces pollutants, leading to health and environmental consequences, although improved cook stove programs are alleviating some of these effects. First-generation biomass technologies can be economically competitive, but may still require gaining public acceptance and overcoming small-scale issues.[4]
Hydroelectricity
Hydroelectric power plants have the advantage of being long-lived and many existing plants have operated for more than 100 years. Hydropower is also an extremely flexible technology from the perspective of power grid operation. Large hydropower provides one of the lowest cost options in today’s energy market, even compared to fossil fuels and there are no harmful emissions associated with plant operation.[4]
Hydroelectric power is currently the world’s largest installed renewable source of electricity, supplying about 17% of total electricity in 2005.[5] China is the world's largest producer of hydroelectric power in the world, followed by Canada.
However, there are several significant social and environmental disadvantages of large-scale hydroelectric power systems: dislocation of people living where the reservoirs are planned and disruption of aquatic ecosystems and birdlife.[6] Hydroelectric power is now more difficult to site in developed nations because most major sites within these nations are either already being used or may be unavailable for environmental reasons. The areas of greatest hydroelectric growth are the growing economies of Asia. India and China are the development leaders; however, other Asian nations are also expanding hydropower.
There is a strong consensus now that countries should adopt an integrated approach towards managing water resources, which would involve planning hydropower development in co-operation with other water-using sectors.[4]
Geothermal power and heat
Geothermal power plants can operate 24 hours per day, providing baseload capacity. Estimates for the world potential capacity for geothermal power generation vary widely, ranging from 40 GW by 2020 to as much as 6,000 GW.[7][8]
Geothermal power capacity grew from around 1 GW in 1975 to almost 10 GW in 2008.[8] The United States is the world leader in terms of installed capacity, representing 3.1 GW. Other countries with significant installed capacity include the Philippines (1.9 GW), Indonesia (1.2 GW), Mexico (1.0 GW), Italy (0.8 GW), Iceland (0.6 GW), Japan (0.5 GW), and New Zealand (0.5 GW).[8][9] In some countries, geothermal power accounts for a significant share of the total electricity supply, such as in the Philippines, where geothermal represented 17 percent of the total power mix at the end of 2008.[10]
Geothermal ground source heat pumps represented an estimated 30 gigawatts-thermal (GWth) of installed capacity at the end of 2008, with other direct uses of geothermal heat (i.e., for space heating, agricultural drying and other uses) reaching an estimated 15 GWth. As of 2008, at least 76 countries use geothermal energy in some form.
Second-generation technologies
Markets for second-generation technologies have been strong and growing over the past decade, and these technologies have gone from being a passion for the dedicated few to a major economic sector in countries such as Germany, Spain, the United States, and Japan. Many large industrial companies and financial institutions are involved and the challenge is to broaden the market base for continued growth worldwide.[4]
Solar Heating
Solar heating systems are a well known second-generation technology and generally consist of solar thermal collectors, a fluid system to move the heat from the collector to its point of usage, and a reservoir or tank for heat storage. The systems may be used to heat domestic hot water, swimming pools, or homes and businesses. The heat can also be used for industrial process applications or as an energy input for other uses such as solar assisted air conditioning.[11]
In many warmer climates, a solar heating system can provide a very high percentage (50 to 75%) of domestic hot water energy. As of 2009, China has 27 million rooftop solar water heaters.[12]
Solar thermal power stations
Solar thermal power stations include the 354 MW Solar Energy Generating Systems power complex in the USA, Nevada Solar One (USA, 64 MW), Andasol 1 (Spain, 50 MW) and the PS10 solar power tower (Spain, 11 MW). Many other plants are under construction or planned, mainly in Spain and the USA.[2] In developing countries, three World Bank projects for integrated solar thermal and combined cycle gas turbine power plants in Egypt, Mexico, and Morocco have been approved.[13]
Photovoltaics
Photovoltaic (PV) cells, also called solar cells, convert light into electricity. In the 1980s and early 1990s, most photovoltaic modules were used to provide small, stand-alone power systems in areas with no electricity distribution system. However, from around 1995, industry efforts have focused increasingly on developing building-integrated photovoltaics and photovoltaic power plants for grid-connected applications.
As of October 2009, the largest photovoltaic (PV) power plants in the world are the Olmedilla Photovoltaic Park (Spain, 60 MW), the Puertollano Photovoltaic Park (Spain, 50 MW), the Moura Photovoltaic Power Plant (Portugal, 46 MW), and the Waldpolenz Solar Park (Germany, 40 MW).[14] The largest photovoltaic power plant in North America is the 25 MW DeSoto Next Generation Solar Energy Center in Florida. The plant consists of over 90,000 solar panels.[15]
At the end of 2008, the cumulative global PV installations reached 15,200 MW.[13] Photovoltaic production has been doubling every two years, increasing by an average of 48 percent each year since 2002, making it the world’s fastest-growing energy technology. The top five photovoltaic producing countries are Japan, China, Germany, Taiwan, and the United States.[16]
Wind power
Some of the second-generation renewables, such as wind power, have high potential and have already realized relatively low production costs.[17][18] At the end of 2009, worldwide wind power plant capacity was 157,900 MW, representing an increase of 31 percent during the year,[19] and wind power supplied some 1.3% of global electricity consumption.[20] Wind power is widely used in European countries, and more recently in the United States and in Asia.[21][22] Wind power accounts for approximately 19% of electricity generation in Denmark, 11% in Spain and Portugal, and 9% in the Republic of Ireland.[23] These are some of the largest "wind farms" in the world, as of January 2010:
Wind farm | Installed capacity (MW) |
Country |
---|---|---|
Capricorn Ridge Wind Farm | 662 | United States |
Fowler Ridge Wind Farm | 750 | United States |
Horse Hollow Wind Energy Center | 736 | United States |
Roscoe Wind Farm | 781 | United States |
San Gorgonio Pass Wind Farm | 619 | United States |
Tehachapi Pass Wind Farm | 690 | United States |
Modern forms of bioenergy
Global ethanol (C2H5OH) production for transport fuel tripled between 2000 and 2007 from 17 billion to more than 52 billion litres, while biodiesel expanded more than ten-fold from less than 1 billion to almost 11 billion litres. Biofuels provide 1.8% of the world’s transport fuel and recent estimates indicate a continued high growth. The main producing countries for transport biofuels are the United States, Brazil, and the European Union.[24]
The growing ethanol and biodiesel industries are providing jobs in plant construction, operations, and maintenance, mostly in rural communities. According to the Renewable Fuels Association, the ethanol industry created almost 154,000 U.S. jobs in 2005 alone, boosting household income by $5.7 billion. It also contributed about $3.5 billion in tax revenues at the local, state, and federal levels.[25]
Ethanol
Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from sugar cane, and ethanol now provides 18 percent of the country's automotive fuel. As a result of this and the exploitation of domestic deep water oil sources, Brazil, which for years had to import a large share of the petroleum needed for domestic consumption, recently reached complete self-sufficiency in liquid fuels.[26][27]
Most cars on the road today in the United States can run on blends of up to 10% ethanol, and motor vehicle manufacturers already produce vehicles designed to run on much higher ethanol blends. Ford, DaimlerChrysler, and General Motors are among the automobile companies that sell flexible-fuel cars, trucks, and minivans that can use gasoline and ethanol blends ranging containing up to 85% ethanol (E85). By mid-2006, there were approximately six million E85-compatible vehicles on U.S. roads. The challenge is to expand the market for biofuels beyond the farm states where they have been most popular. Flexible-fuel vehicles are assisting in this transition because they allow drivers to choose different fuels based on price and availability. The Energy Policy Act of 2005, which calls for 7.5 billion gallons of biofuels to be used annually by 2012, will also help to expand the market.[25]
Biodiesel
Existing diesel engines often can use, without modification, up to 20% biodiesel blends. Other engines can use 100% biodiesel.
Biodiesel is biodegradable, while petroleum diesel is not. Emissions from biodiesel are said to have less environmental impact.
Recent growth of renewables
From the end of 2004 to the end of 2008, solar photovoltaic (PV) capacity increased sixfold to more than 16 gigawatts (GW), wind power capacity increased 250 percent to 121 GW, and total power capacity from new renewables increased 75 percent to 280 GW. During the same period, solar heating capacity doubled to 145 gigawatts-thermal (GWth), while biodiesel production increased sixfold to 12 billion liters per year and ethanol production doubled to 67 billion liters per year.[13]
Selected global indicators | 2004 | 2005 | 2006 | 2007 | 2008 |
---|---|---|---|---|---|
Annual investment in new renewable capacity | 30 | 38 | 63 | 104 | 120 billion USD |
Existing renewables power capacity, including large-scale hydro |
895 | 930 | 1,020 | 1,070 | 1,140 GWe |
Existing renewables power capacity, excluding large hydro |
160 | 182 | 207 | 240 | 280 GWe |
Wind power capacity (existing) | 48 | 59 | 74 | 94 | 121 GWe |
Biomass heating | ~250 GWth | ||||
Solar hot water/ Space heating | 77 | 88 | 105 | 126 | 145 GWth |
Geothermal heating | ~50 GWth | ||||
Ethanol production (annual) | 30.5 | 33 | 39 | 50 | 67 billion liters |
Number of countries with policy targets for renewable energy use |
45 | 49 | 66 | 73 |
Annual percentage growth for 2008 was significant. Wind power grew by 29 percent and grid-connected solar PV by 70 percent. The capacity of utility-scale solar PV plants (larger than 200 kilowatts) tripled during 2008, to 3 GW. Solar hot water grew by 15 percent, and annual ethanol and biodiesel production both grew by 34 percent. Heat and power from biomass and geothermal sources continued to grow, and small hydroelectric power sources increased by about 8 percent.[13]
In 2008, for the first time, more renewable energy than conventional power capacity was added in both the European Union and United States, demonstrating a "fundamental transition" of the world's energy markets towards renewables, according to a report released by REN21, a global renewable energy policy network based in Paris.[28]
References
- ↑ Renewable energy... into the mainstream From the IEA website
- ↑ 2.0 2.1 Renewables 2007 Global Status Report From website of the Renewable Energy Policy Network for the 21st Century (REN21)
- ↑ Deploying Renewables From the IEA website
- ↑ 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Renewables in global energy supply: An IEA facts sheet From the IEA website.
- ↑ Review of Solutions to Global Warming, Air Pollution, and Energy Security Mark Z. Jacobson (2009). From the website of the Stanford University in Stanford, California
- ↑ Hydroelectric power's dirty secret revealed From the website of New Scientist, 24 February 2005.
- ↑ "What is Geothermal Potential?", IGA News. From the website of the International Geothermal Association.
- ↑ 8.0 8.1 8.2 The possible role and contribution of geothermal energy to the mitigation of climate change From Proceedings of IPCC Scoping Meeting on Renewable Energy Sources, Luebeck, Germany, 20-25 January 2008, p. 59-80.
- ↑ U.S. Geothermal Energy Market Report 2009 From website of the Islandsbanki, Iceland
- ↑ Philippines targets $2.5 billion geothermal development, Leonora Walet, Reuters, November 5, 2009.
- ↑ Solar assisted air-conditioning of buildings From the IEA website.
- ↑ Lester R. Brown (2009). Plan B 4.0: Mobilizing to Save Civilization (Earth Policy Institute), 1st Edition. W.W. Norton Company, p.122. ISBN 0-393-07103-0. Full copy available online here
- ↑ 13.0 13.1 13.2 13.3 13.4 Renewables Global Status Report: 2009 Update From website of the Renewable Energy Network for the 21st Century (REN21)
- ↑ World's largest photovoltaic power From website of Photovoltaic Resources.com
- ↑ FPL Commissions DeSoto Next Generation Solar Energy Center Energy Online, October 28, 2009.
- ↑ Solar Cell Production Jumps 50 Percent in 2007 From the website of the Earth Policy Institute.
- ↑ "Stabilizing Climate" (PDF) A chapter in: Lester R. Brown (2006). Plan B 2.0: Rescuing a Planet Under Stress and a Civilization in Trouble, 1st Edition. W.W. Norton Company, p. 122. ISBN 0-393-06162-0.
- ↑ The Clean Tech Revolution... the costs of clean energy are declining
- ↑ Gains in Global Wind Capacity Reported From the website of The New York Times, May 27, 2010
- ↑ Wind turbines generate more than 1 % of the global electricity February 2008. From the website of the World Wind Energy Association (WWEA)
- ↑ Global wind energy markets continue to boom – 2006 another record year. From the website of the Global Wind Energy Council (GWEC)
- ↑ Global Wind 2008 Report From the website of the Global Wind Energy Council (GWEC)
- ↑ IEA Wind Energy: Annual Report 2008 From the website of the IEA
- ↑ Assessing Biofuels (2009) From the website of the United Nations Environment Programme
- ↑ 25.0 25.1 American energy: The renewable path to energy security (2006) From the website of the Worldwatch Institute Center for American Progress
- ↑ America and Brazil Intersect on Ethanol (May 15, 2006) From the website of RenewableEnergyWorld.com
- ↑ New Rig Brings Brazil Oil Self-Sufficiency (April 21, 2006) From the website of The Washington Post
- ↑ 28.0 28.1 Renewables Global Status Report 2009 Update From the website of RenewableEnergyWorld.com
- ↑ Renewables Global Status Report: 2006 Update From website of the Renewable Energy Network for the 21st Century (REN21)