User:John R. Brews/Sample: Difference between revisions
imported>John R. Brews No edit summary |
imported>John R. Brews No edit summary |
||
Line 20: | Line 20: | ||
The vector potential is: | The vector potential is: | ||
:<math>\boldsymbol A(\boldsymbol r , \ t) =\left. \frac{q \boldsymbol \beta}{(1-\mathbf{\hat u \cdot }\boldsymbol \beta )|\boldsymbol r - \boldsymbol \tilde r |}\right|_{\tilde t} =\left. \frac{q \boldsymbol \beta}{(1-\mathbf{\hat u \cdot }\boldsymbol \beta )R}\right|_{\tilde t} \ . </math> | :<math>\boldsymbol A(\boldsymbol r , \ t) =\left. \frac{q \boldsymbol \beta}{(1-\mathbf{\hat u \cdot }\boldsymbol \beta )|\boldsymbol r - \boldsymbol \tilde r |}\right|_{\tilde t} =\left. \frac{q \boldsymbol \beta}{(1-\mathbf{\hat u \cdot }\boldsymbol \beta )R}\right|_{\tilde t} \ . </math> | ||
With these potentials the electric field and the magnetic flux density are found to be (dots over symbols are time derivatives):<ref name=Melia/> | |||
:<math>\boldsymbol E ( \boldsymbol r , \ t) = q \left[ \frac{ | |||
\mathbf{\hat u}-\boldsymbol \beta (1-\beta^2) | |||
}{(1-\mathbf{\hat u} \mathbf{\cdot} \boldsymbol \beta )^3 R^2} + \frac{\mathbf{\hat u \ \mathbf{\times} \ } [(\hat\mathbf u-\boldsymbol \beta )\ \mathbf{\times} \ \boldsymbol {\dot \beta} ]}{c(1-\mathbf{\hat u \cdot}\boldsymbol \beta )^3 R} \right ] | |||
</math> | |||
:<math>\boldsymbol B(\boldsymbol r , \ t) = \boldsymbol {\hat u \ \times}\ \boldsymbol E \ . </math> | |||
==Notes== | ==Notes== |
Revision as of 16:03, 23 April 2011
Liénard–Wiechert potentials
Define β in terms of the velocity of a point charge at time t as:
and unit vector û as
where R is the vector joining the observation point P to the moving charge q at the time of observation. Then the Liénard–Wiechert potentials consist of a scalar potential Φ and a vector potential A. The scalar potential is:[1]
where the tilde ‘ ~ ’ denotes evaluation at the retarded time ,
c being the speed of light and rO being the location of the particle on its trajectory.
The vector potential is:
With these potentials the electric field and the magnetic flux density are found to be (dots over symbols are time derivatives):[1]
Notes
- ↑ 1.0 1.1 Fulvio Melia (2001). “§4.6.1 Point currents and Liénard-Wiechert potentials”, Electrodynamics. University of Chicago Press, pp. 101. ISBN 0226519570.
Feynman Belušević Gould Schwartz Schwartz Oughstun Eichler Müller-Kirsten Panat Palit Camara Smith classical distributed charge Florian Scheck Radiation reaction Fulvio Melia Radiative reaction Fulvio Melia Barut Radiative reaction Distributed charges: history Lorentz-Dirac equation Gould Fourier space description