CZ:Featured article/Current: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Chunbum Park
imported>Chunbum Park
(→‎Acid rain: Active attack)
Line 1: Line 1:
== '''[[Acid rain]]''' ==
== '''[[Active attack]]''' ==
----
----
'''Acid rain''' is a popular term for the atmospheric deposition of acidified [[rain]], [[snow]], sleet, hail and [[particulates]], as well as acidified [[fog]] and [[cloud]] [[water]]. The increased [[pH|acidity]] of these depositions, primarily from [[Sulfuric acid|sulfuric]] and [[nitric acid]]s, is generated as a by-product of the [[combustion]] of fuels,<ref>'''Note:''' Sulfuric acid is formed from the sulfur dioxide resulting from combustion of sulfur-containing fuels. Nitric acid is formed from the [[nitrogen oxides]] resulting from the high temperature partial conversion of the [[nitrogen]] contained in the combustion air.</ref> especially in [[fossil fuel]] [[power plant]]s. The heating of homes, electricity production, and driving vehicles all rely primarily on fossil fuel [[Energy (science)|energy]]. When fossil fuels are burned, [[acid]]-forming [[nitrogen oxides]] and [[sulfur oxides]] are released to the [[atmosphere]]. These [[chemical compound]]s are transformed in the atmosphere, often traveling thousands of [[kilometer]]s from their original source, and then fall out on land and water surfaces as acid rain. As a result, air [[pollutant]]s from power plants in the states of  [[New Jersey]] or [[Michigan]] can impact pristine forests or lakes in undeveloped parts of the states of [[New Hampshire]] or [[Maine]].<ref name=eoearth>The primary source for this article was [http://www.eoearth.org/article/Acid_rain?topic=49506 Acid Rain] August 7, 2010 (last revised  October 19, 2010), Gene Likens (Lead author), Wayne Davis, Lori Zaikowski and Stephen C. Nodvin. (Published on the website of the [[Encyclopedia of Earth]])</ref>
In [[cryptography]] an '''active attack''' on a communications system is one in which the attacker changes the communication. He may create, forge, alter, replace, block or reroute messages. This contrasts with a [[passive attack]] in which the attacker only eavesdrops; he may read messages he is not supposed to see, but he does not alter messages.


Acid rain in [[North America]] was discovered in 1963 in rain at  the [[Hubbard Brook Experimental Forest]] (HBEF)<ref>'''Note:''' Site of the Hubbard Brook Ecosystem Study in the [[White Mountains]] of [[New Hampshire]]</ref> that was some 100 times more acidic than unpolluted rain. Innovations for reducing fossil fuel combustion [[Air pollution emissions|emissions]], such as scrubbers upstream of the tall [[flue gas stack]]s on power plants and other industrial facilities, [[catalytic converter]]s on automobiles, and use of low-[[sulfur]] [[coal]], have been employed to reduce emissions of [[sulfur dioxide]] (SO<sub>2</sub>) and nitrogen oxides (NOx).
== Active attacks on communication ==


''Note:'' While the examples in this article describe the North American situation, the nature and effects of acid rain are similar all over the world.
Active attacks that target the communication system itself include:
* [[man-in-the-middle attack]]; the attacker tricks both communicating parties into communicating with him; they think they are talking to each other
* [[Stream_cipher#Rewrite_attacks | rewrite attacks]]; the attacker can replace a message with anything he chooses


'''Successful active attacks are devastating!''' If the attacker can replace messages and have them taken as genuine, it is all over. The security system is then at best worthless; at worst it is of great value to the enemy.


''[[Acid rain|.... (read more)]]''
Fortunately, these attacks are '''generally hard to execute'''. The attacker must not only intercept messages, break whatever [[cryptography]] is in use (often ''both'' an authentication mechanism and a cipher), and send off his bogus message; he also has to block delivery of the genuine message. Moreover, he has to do it all '''in real time''', fast enough to avoid alerting his victims and to beat whatever synchronisation mechanisms the network may be using. A cryptosystem that an enemy can break in hours or days would generally be considered insecure, even worthless, but it will prevent active attacks as long as the enemy cannot break it quickly enough to replace messages.
 
''[[Active attack|.... (read more)]]''


{| class="wikitable collapsible collapsed" style="width: 90%; float: center; margin: 0.5em 1em 0.8em 0px;"
{| class="wikitable collapsible collapsed" style="width: 90%; float: center; margin: 0.5em 1em 0.8em 0px;"
|-
|-
! style="text-align: center;" | &nbsp;[[Acid rain#References|notes]]
! style="text-align: center;" | &nbsp;[[Active attack|notes]]
|-
|-
|
|
{{reflist|2}}
{{reflist|2}}
|}
|}

Revision as of 15:26, 27 July 2013

Active attack


In cryptography an active attack on a communications system is one in which the attacker changes the communication. He may create, forge, alter, replace, block or reroute messages. This contrasts with a passive attack in which the attacker only eavesdrops; he may read messages he is not supposed to see, but he does not alter messages.

Active attacks on communication

Active attacks that target the communication system itself include:

  • man-in-the-middle attack; the attacker tricks both communicating parties into communicating with him; they think they are talking to each other
  • rewrite attacks; the attacker can replace a message with anything he chooses

Successful active attacks are devastating! If the attacker can replace messages and have them taken as genuine, it is all over. The security system is then at best worthless; at worst it is of great value to the enemy.

Fortunately, these attacks are generally hard to execute. The attacker must not only intercept messages, break whatever cryptography is in use (often both an authentication mechanism and a cipher), and send off his bogus message; he also has to block delivery of the genuine message. Moreover, he has to do it all in real time, fast enough to avoid alerting his victims and to beat whatever synchronisation mechanisms the network may be using. A cryptosystem that an enemy can break in hours or days would generally be considered insecure, even worthless, but it will prevent active attacks as long as the enemy cannot break it quickly enough to replace messages.

.... (read more)