Nuclear fusion: Difference between revisions
Jump to navigation
Jump to search
Pat Palmer (talk | contribs) mNo edit summary |
(add intro paragraph) |
||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
'''Nuclear fusion''' is a process in which small atomic nuclei fuse and release energy. In a hydrogen bomb, fusion of deuterium and tritium (two isotopes of hydrogen) releases four times as much energy as the same mass of uranium in a fission bomb. | '''Nuclear fusion''' is a process in which small atomic nuclei fuse and release energy. In a hydrogen bomb, fusion of deuterium and tritium (two isotopes of hydrogen) releases four times as much energy as the same mass of uranium in a fission bomb.<ref name=fusionEnergy/> | ||
To derive useful power from nuclear fusion, the nuclei need to be confined at pressures and temperatures far higher than any material can withstand. There are two ways to do this - either with magnetic fields, which force the charged particles to circle around rather that escape, or with "inertial confinement" like in a bomb, but driven by lasers on a much smaller scale. | |||
{{reflist|refs= | |||
<ref name=fusionEnergy>On a mass basis, the D-T fusion reaction releases over four times as much energy as uranium fission.[https://world-nuclear.org/information-library/current-and-future-generation/nuclear-fusion-power.aspx Nuclear Fusion Power] World Nuclear Association, 2022. | |||
</ref> | |||
}} |
Revision as of 13:13, 23 May 2023
Nuclear fusion is a process in which small atomic nuclei fuse and release energy. In a hydrogen bomb, fusion of deuterium and tritium (two isotopes of hydrogen) releases four times as much energy as the same mass of uranium in a fission bomb.[1]
To derive useful power from nuclear fusion, the nuclei need to be confined at pressures and temperatures far higher than any material can withstand. There are two ways to do this - either with magnetic fields, which force the charged particles to circle around rather that escape, or with "inertial confinement" like in a bomb, but driven by lasers on a much smaller scale.
- ↑ On a mass basis, the D-T fusion reaction releases over four times as much energy as uranium fission.Nuclear Fusion Power World Nuclear Association, 2022.