Adjoint (operator theory)/Related Articles: Difference between revisions
Jump to navigation
Jump to search
imported>Jitse Niesen (start) |
No edit summary |
||
Line 15: | Line 15: | ||
{{r|C*-algebra}} | {{r|C*-algebra}} | ||
{{r|Adjoint functor}} | {{r|Adjoint functor}} | ||
==Articles related by keyphrases (Bot populated)== | |||
{{r|Normed space}} | |||
{{r|Space (mathematics)}} | |||
{{r|Dual space}} |
Latest revision as of 12:01, 6 July 2024
- See also changes related to Adjoint (operator theory), or pages that link to Adjoint (operator theory) or to this page or whose text contains "Adjoint (operator theory)".
Parent topics
Subtopics
- Hilbert space [r]: A complete inner product space. [e]
- Riesz representation theorem [r]: Add brief definition or description
- Bounded operator [r]: Add brief definition or description
- Densely defined operator [r]: Add brief definition or description
- Self-adjoint operator [r]: Linear operator which is identical with its adjoint operator. [e]
- C*-algebra [r]: Add brief definition or description
- Adjoint functor [r]: Add brief definition or description
- Normed space [r]: A vector space that is endowed with a norm. [e]
- Space (mathematics) [r]: A set with some added structure, which often form a hierarchy, i.e., one space may inherit all the characteristics of a parent space. [e]
- Dual space [r]: The space formed by all functionals defined on a given space. [e]