User:Milton Beychok/Sandbox

From Citizendium
< User:Milton Beychok
Revision as of 16:07, 6 March 2008 by imported>Milton Beychok
Jump to navigation Jump to search
(PD) Photo: National Park Service
Flue gas emissions from a coal-fired power plant in New Mexico.

Flue gas emissions from fossil fuel combustion refers to the combustion product gas resulting from the burning of fossil fuels [1].

Most fossil fuels are combusted with ambient air (as differentiated from combustion with pure oxygen) and this article is based on the use of ambient air as the combustion air.

Discussion of flue gas components

Since ambient air contains about 79 volume percent gaseous nitrogen (N2)[2], which is essentially non-combustible, the largest part of the flue gas from most fossil fuel combustion is uncombusted nitrogen. The next largest part of the flue gas is carbon dioxide (CO2) which can be as much as 10 to 15 volume percent or more of the flue gas. This is closely followed in volume by water vapor (H20) created by the combustion of the hydrogen in the fuel with atmospheric oxygen. Much of the 'smoke' seen exiting from flue gas stacks is this water vapor forming a fog cloud as it contacts cool air and condenses into water.

Flue gas pollutants

A typical flue gas from the combustion of fossil fuels will also contain some very small amounts of nitrogen oxides (NOx), sulfur dioxide (SO2) and particulate matter.[1] The nitrogen oxides are derived from the nitrogen in the ambient air as well as from any nitrogen-containing compounds in the fossil fuel. The sulfur dioxide is derived from any sulfur-containing compounds in the fuels. The particulate matter is composed of very small particles of solid materials and very small liquid droplets which give flue gases their smoky appearance.

Calculated flue gas emissions from burning fossil fuels

The steam generators in large power plants and the process furnaces in large petroleum refineries, petrochemical and chemical plants, and incinerators burn very considerable amounts of fossil fuels and therefore emit large amounts of flue gas to the ambient atmosphere. The table below presents the total amounts of flue gas typically generated by the burning of fossil fuels such as natural gas, fuel oil and coal. The data in the table were obtained by stoichiometric[3] calculations.[4]

It is of interest to note that the total amount of flue gas generated by coal combustion is only 10 percent higher than the flue gas generated by natural gas combustion.


EXHAUST FLUE GAS GENERATED BY COMBUSTION OF FOSSIL FUELS
(In SI metric units and in USA customary units)


Combustion Data Fuel Gas Fuel Oil Coal
Fuel properties:

Gross caloric value, MJ / Nm³
Gross heating value, Btu / scf
Gross caloric value, MJ / kg
Gross heating value, Btu / gallon
Gross caloric value, MJ / kg
Gross heating value, Btu / pound

Molecular weight
Specific gravity
Gravity, °API
Carbon / hydrogen ratio by weight

weight % carbon
weight % hydrogen
weight % oxygen
weight % sulfur
weight % nitrogen
weight % ash
weight % moisture

Combustion air:
Excess combustion air, %

Wet exhaust flue gas:
Amount of wet exhaust gas, Nm³/ GJ of fuel
Amount of wet exhaust gas, scf / 106 Btu of fuel
CO2 in wet exhaust gas, volume %
O2 in wet exhaust gas, volume %
Molecular weight of wet exhaust gas

Dry exhaust flue gas:
Amount of dry exhaust gas, Nm³/GJ of fuel
Amount of dry exhaust gas, scf / 106 Btu of fuel
CO2 in dry exhaust gas, volume %
O2 in dry exhaust gas, volume %
Molecular weight of dry exhaust gas

 

43.01
1,093
 
 
 
 

18
 
 
 

 
 
 
 
 
 
 

 
12

 
294.8
11,600
8.8
2.0
27.7

 
241.6
9,510
10.8
2.5
29.9

 

 
 
43.50
150,000
 
 

 
0.9626
15.5
8.1

 
 
 
 
 
 
 

 
15

 
303.1
11,930
12.4
2.6
29.0

 
269.3
10,600
14.0
2.9
30.4

 

 
 
 
 
25.92
11,150

 
 
 
 

61.2
4.3
7.4
3.9
1.2
12.0
10.0

 
20

 
323.1
12,714
13.7
3.4
29.5

 
293.6
11,554
15.0
3.7
30.7

Notes:
(1) Normal cubic metres (Nm³) are at 0 °C and 101.325 kPa, and Standard cubic feet (scf) are at 60 °F and 14.696 psia.
(2) The above table does not separate out the amounts of sulfur dioxide, nitrogen oxides or particulate matter.

References

  1. 1.0 1.1 Compilation of Air Pollutant Emission Factors
  2. Perry, R.H. and Green, D.W. (Editors) (1997). Perry's Chemical Engineers' Handbook, 7th Edition. McGraw Hill. ISBN ISBN 0-07-049841-5. 
  3. Zumdahl, Steven S. (2005). Chemical Principles, 5th Edition. Houghton Mifflin College Division. ISBN 0-618-37206-7. 
  4. Air Dispersion Modeling Conversions and Formulas